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Abstract

This paper examines the optimal design of contests in the presence of negative prizes and

establishes the optimality of a modified all-pay auction with entry fee and reserve. The entry

fee always equals the contestants’ liability, and the reserve is weakly higher than in contests

without negative prizes. The modification involves awarding all contestants a strictly positive

prize if none meet the reserve. This optimal contest better incentivizes high-ability contestants

by offering them a higher prize augmented by entry fees, while still ensuring full participation

from low-ability contestants. Theoretical analysis demonstrates that when contestants’ liability

is sufficiently high, the same contest maximizes both the expected total effort and winner’s effort,

with both measures increasing with liability. Numerical simulations show that even with low

liability, predictions from the two optimal contests are closely aligned. To test these predictions,

we conduct an experiment comparing optimal contests across different liability levels, confirming

the “killing-two-birds-with-one-stone” prediction.
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1 Introduction

In 1990, the Federal Communication Commission (FCC) organized an open contest requiring a

$20,000 entry fee to determine the American broadcast standard for high-definition television. In

such traditional contests, contestants simultaneously decide whether to participate by paying an

entry fee, with winners determined by rankings upon meeting a reserve. However, low-ability

contestants may be discouraged from participating, as paying the entry fee without winning yields

a negative prize of -$20,000. While conventional auction design theory by Myerson (1981) suggests

that excluding low-ability contestants is in the contest designers’ interest, recent research by Liu

et al. (2018) shows that when negative prizes are allowed and can augment the whole prize, inducing

full participation becomes optimal. Liu et al. (2018) focus on contests designed to maximize the

(expected) total effort, but this objective may not always align with the contest designer’s primary

goals. In many real-world settings, maximizing the (expected) winner’s effort is often more critical.

For instance, in research tournaments such as the FCC example, it is the best performance rather

than the collective effort that determines success (Taylor, 1995). Similarly, crowdsourcing platforms

like Indiegogo and InnoCentive prioritize the quality and feasibility of the final innovation or solution

over the aggregate contributions of participants. Other examples include competing legislative

bills that shape laws, lobbyists crafting persuasive policy proposals, politicians striving to win

elections, lawyers building compelling evidence for court cases, and citizens submitting competing

urban development projects to their municipality, as detailed in Serena (2017). Yet, in some

situations, the designer may need to balance maximizing the winner’s effort and total effort. For

example, the Netflix Prize (https://www.netflixprize.com/rules.html), established in 2006, aimed

to identify the best algorithm for predicting user ratings of films. While Netflix’s primary goal was

to implement the best algorithm (maximizing the winner’s effort), it also valued broad engagement

from participants in generating a variety of new algorithms (maximizing the total effort). Such

dual objectives highlight the complexity of contest design in practical applications.

This paper contributes to the literature by proposing a contest design that can almost always

achieve the dual objectives simultaneously, making it highly versatile and adaptable to diverse de-

sign needs. Theoretically, we extend the Liu et al.’s (2018) framework to derive the optimal contest

for maximizing the winner ’s effort when negative prizes are allowed. We find that the optimal

contest for maximizing the winner’s effort has a structure similar to the contest for maximizing the

total effort and can be implemented by a modified all-pay auction with entry fee and reserve. In

this optimal structure, the entry fee is set at contestants’ liability, and the reserve is weakly higher

than in contests without negative prizes. The key modification involves allowing all contestants

to receive some prizes when no one meets the reserve. This design induces full participation and

provides stronger incentives by topping up the prize budget with the entry fees. Surprisingly, if

contestants’ liability is sufficiently high, the same contest achieves the dual objectives of maxi-

mizing the total effort and the winner’s effort. Furthermore, a large set of numerical simulations

indicate that even when contestants’ liability is low, the predictions from the two contests optimally
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designed for maximizing the winner’s effort and maximizing the total effort, respectively, are quite

close. This implies that designers can achieve both goals to a reasonable extent with either optimal

contest for any liability level. To the best of our knowledge, this “killing-two-birds-with-one-stone”

result has not been reported previously in the contest literature. We also find that both total

and winner’s effort increase with the size of the liability. Additionally, we deepen the theoretical

investigation by examining the roles of risk aversion. Experimentally, we present the first study

testing the proposed contest design in a controlled laboratory setting, evaluating its effectiveness in

achieving the dual objectives of maximizing both total effort and winner’s effort. Our results show

that the aggregate outcomes of our optimal contests align closely with the theoretical predictions.

A notable feature of the theoretically optimal contest structure is that if all contestants’ efforts

fall below a certain threshold, the prize budget (or a portion of it) is equally distributed among

them. This feature aims to encourage participation from lower-ability contestants, thereby en-

abling transfers from these individuals to those with higher abilities through negative prizes. This

prize structure closely resembles the performance-based pay structure adopted by many university

departments worldwide where salary supplements or bonus pay are part of a collective pool dis-

tributed based on departmental level performance. Specifically, when no individual faculty member

meets performance criteria, the departmental funding pool for such bonuses are distributed equally

among all members rather than being forfeited

More specifically, to test the theoretical properties of the optimal contests, we conduct a lab

experiment with four different liability levels. The experiment includes six treatments: High TW,

Medium TW, Low W, Low T, Zero W and Zero T, where High, Medium, Low, and Zero represent

the levels of liability, and T and W indicate whether the contest theoretically aims to maximize

the total effort or the winner’s effort. The treatments with high or medium liability are designed

to maximize both total effort and winner’s effort. In contrast, the four treatments with low or zero

liability cannot theoretically achieve both objectives, so they represent different goals of maximizing

the total effort or the winner’s effort. Notably, the two treatments with zero liability serve as

benchmarks where negative prizes are not allowed. Importantly, after extensively exploring a wide

range of parameterizations, we find that the predicted effort differences between the two different

optimal designs with different objectives are relatively small when contestants’ liability is low or

zero, making them difficult to detect statistically in lab experiments. Therefore, the proposed

contest structure with negative prizes not only achieves the joint objective of maximizing both

winner’s effort and total effort when contestants’ liability is sufficiently large, but it also “almost”

achieves this goal even when liability does not exceed the theoretical threshold.

Overall, the aggregated results from our lab experiment show that the winner’s effort and

total effort are remarkably close to the predicted levels across all treatments. In the High TW

treatment, the winner’s effort is 45.8% greater compared to the baseline treatment Zero W, and

the total effort is 48.5% greater compared to the baseline treatment Zero T. The Medium TW

treatment also produces greater winner’s effort and total effort relative to treatments with low or

zero liability, although these improvements are not statistically significant. This finding confirms our
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prediction that induced effort monotonically increases in liability. However, we observe deviations in

individual behavior from the theoretical prediction. While the theory predicts full participation in

the optimal contest, the actual participation rate is much lower. Specifically, the low participation

rate is primarily driven by low-ability contestants. By contrast, high-ability contestants enter the

contest over 90% of the time when the liability is high, but they tend to provide lower efforts than

the predicted levels.

To further investigate the deviations in individual behavior, we first conduct additional theoret-

ical analysis, demonstrating that non-entry decisions can be rationalized by our mechanism when

considering risk-averse players. Consistent with the theoretical analysis, our experimental data

provide support for the role of risk attitudes in influencing entry decisions. Then, we conduct an

additional treatment based on the High TW treatment. The only difference is that participants are

forced to enter the contest during the first 10 rounds. After that, they are free to decide whether

to continue entering the contest, as in the original High TW treatment. The design of mandatory

entry aims to simplify participant’s decision-making and allow them to focus solely on their effort

choices.

Our findings indicate that forcing players to enter the contest does not align their behavior

with theoretical predictions. However, the experimental data provide insights into the observed

behavioral deviations. In particular, the underprovision of effort by high-ability players can be

fully explained by their beliefs about the intensity of competition. We also find that the experience

of forced entry has little impact on players’ behavior during the last 10 rounds when they are free

to opt out of the contest. This suggests that our original findings from the High TW treatment

are highly robust and, crucially, that opting out of the contest is a deliberate choice rather than

a mistake. Indeed, by comparing the realized payoffs between the first and last 10 rounds, we

find that low-ability players are better off by not entering the contest. Thus, the decision of low-

ability players to refrain from entry is empirically rational. This finding is further supported by a

counterfactual analysis of low-ability players’ payoffs, utilizing data from the High TW treatment.

Hence, risk aversion, negative experience associated with entering the contest, and players’ beliefs

about the intensity of competition can collectively help explain the observed behavioral deviations.

Contests with negative prizes, which act as sticks in addition to carrots to motivate effort, have

received considerable attention in the recent literature. Similar to Fullerton and McAfee (1999),

Liu et al. (2018) and Hammond et al. (2019), we assume that negative prizes can be used to

supplement the prize budget. Our theoretical model closely follows Liu et al. (2018) in deriving the

optimal contest for maximizing the winner’s effort using the mechanism design approach.1 Several

papers assume that negative prizes cannot be used to supplement the prize budget. The most

comprehensive study is Liu and Lu (2023) who allow for a general setup and find that the optimal

1Note that while this approach has been adopted by Polishchuk and Tonis (2013) to rationalize the Tullock
success function, Chawla, Hartline and Sivan (2019) to derive the optimal contest for maximizing the winner’s effort,
and Kirkegaard (2012) to study the optimal favoritism with asymmetric players, none of these papers consider the
inclusion of negative prizes.
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prize structure comprises a winner-take-all prize for the best performer and, at most, one negative

prize for the worst performer among all potential contestants, whenever they enter the competition.

Prior to Liu and Lu (2023), previous works imposed additional assumptions on the prize structure,

such as the number of positive prizes, the number of negative prizes, and uniform negative prizes.

For instance, Thomas and Wang (2013) and Kamijo (2016) assume a single positive prize for the

best performer and a single negative prize for the worst performer among all players who enter.

Moldovanu, Sela and Shi (2012) assume a single positive prize for the best performer and a fixed

number of uniform negative prizes for the lowest entrants.2

Our paper also contributes to the experimental literature on contests (see Dechenaux, Kovenock

and Sheremeta (2015) for a comprehensive review, and Sisak (2009) for a review specifically on

multiple-prize contests), particularly contests under incomplete information, which have received

relatively limited attention (Noussair and Silver, 2006; Müller and Schotter, 2010; Liu et al., 2014;

Boosey, Brookins and Ryvkin, 2017). Boosey, Brookins and Ryvkin (2020) study contests with

endogenous entry and an outside option (which can be interpreted as an entry fee), testing the

impact of disclosing the number of contestants on individual effort. Hammond et al. (2019) examine

the effect of an optimal prize-augmenting entry fee on the total effort in all-pay auctions when

individual ability is private information. It is important to note that such an all-pay auction with

an entry fee is sub-optimal on its own as it discourages low-ability contestants from participating.

Compared to these previous works, our experiment implements the optimal contest and extends

the focus to both the winner’s effort and the total effort. We are the first to test the effectiveness

of this optimal contest in a controlled experiment.

2 Optimal contests

We adopt the framework proposed by Liu et al. (2018). A risk-neutral contest designer has a total

prize budget of V > 0 to elicit effort from N ≥ 2 risk-neutral contestants. Each contestant may

differ by his ability to compete in the contest. The cost for contestant i with ability ti to exert

effort ei ≥ 0 is given by c(ei, ti) = ei/ti. This ability or type ti is private information known only

to contestant i. The ability follows an independent and identical distribution with a cumulative

distribution function F (·) and a probability density function f(·). The support of the ability lies

in the interval [a, b], where a > 0 and b is the maximum ability.

The payoff of a contestant is equal to the prize he receives minus his cost of effort. The contest

designer uses the prize budget V to incentivize effort from the contestants. Additionally, if there is

money left in the budget, the designer values that money as well. For simplicity, we assume a linear

2There is a substantial body of literature on optimal prize structures in contests where negative prizes are not
permitted. Moldovanu and Sela (2001) pioneer this line of research by adopting the the model of all-pay auctions
under incomplete information. Their work has since been extensively extended, including studies by Minor (2012),
who examines the role of convex costs of effort, Olszewski and Siegel (2020), who consider large contests with risk
averse contestants and convex cost functions, Moldovanu and Sela (2006), who consider multiple-stage all-pay auctions
and Moldovanu, Sela and Shi (2007), who assume that contestants care about relative status.
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relationship between effort and money for the contest designer. Let 1/t0 represent the marginal

benefit of effort for the contest designer, with t0 being common knowledge. It is important to note

that the cost of 1 unit of effort for a contestant with the maximum ability (b) is 1/b, which needs to

be less than 1/t0 to make it optimal for the designer to allocate at least some of the prize budget.

Hence, we assume that t0 < b.

One distinctive feature of this paper is that negative prizes are allowed. Contestants have limited

liabilities or endowments, so there is a bound K ≥ 0 for the negative prize. Using a mechanism

design approach, Liu et al. (2018) have fully characterized the optimal contest for maximizing total

effort among symmetric mechanisms. When K = 0, the problem is equivalent to the well-known

one presented by Myerson (1981), and the optimal mechanism involves allocating the entire budget

to the contestant with the highest virtual ability if it exceeds a cutoff. However, when K > 0,

the designer has an incentive to collect negative prizes from contestants and then “top up” the

final prize pool to create a larger payoff gap between winners and losers, thus providing stronger

incentives. The challenge, however, is that low-ability contestants anticipate having little chance

of winning and receiving a negative prize, which discourages their participation. The innovation

of the optimal contest in Liu et al. (2018) is that when no one’s ability exceeds a certain cutoff,

everyone receives the same positive prize. As a result, low-ability contestants receive zero prize in

expectation and are indifferent between participating and not participating.

Liu et al. (2018) demonstrate that the optimal contest can be implemented through a class of

simple contests, namely modified all-pay auctions with entry fee and reserve. This class of contests

nests the standard all-pay auction with a reserve as a special case. Contestants simultaneously

decide whether to pay an entry fee E and how much effort to exert in the contest upon entry. If the

highest effort among the contestants exceeds a threshold (the reserve) ê, then the best performer

receives V plus all the collected entry fees, while others receive zero. Otherwise, all contestants

receive the same shared prize S ∈ [E,E + V/N ]. When E = 0, S = 0, this reduces to the standard

all-pay auction with a reserve ê. When E > 0, this contest features a negative prize, as the prize for

a contestant who chooses to enter and loses to a participant with effort higher than the threshold is

−E < 0. The limited liability constraint implies that the entry fee cannot exceed any contestant’s

liability, i.e., E ≤ K. This class of simple contests is characterized by three parameters (E, ê, S).

We aim to find the optimal contests by selecting appropriate values for (E, ê, S). While the

designer’s objective in Liu et al. (2018) is to maximize the total effort, we are also interested in max-

imizing the winner’s effort, as mentioned in the introduction. Let D ∈ {T,W} denote one of the ob-

jectives. We define the virtual ability functions JT (t) = t− 1−F (t)
f(t) and JW (t) = tF (t)N−1− 1−F (t)N

Nf(t)

under the two objectives, respectively. Intuitively, the virtual ability function JT (t) represents the

situation where the designer knows a contestant’s ability t, allowing the designer to extract t units

of effort with 1 dollar. However, since t is privately known by the contestant, the designer needs to

provide informational rent to the contestant. The virtual ability is simply the difference between

the true ability and the informational rent. The virtual ability function JW (t) follows the same

logic, but in this case, the designer only cares about the contestant’s effort if he becomes the winner,
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which occurs with probability F (t)N−1.

We can define a threshold ability as t∗D = max{JD−1(t0), F
−1(( NK

V+NK )
1

N−1 )}. The following

proposition reproduces the results in Liu et al. (2018), extends their approach to derive the optimal

contest for maximizing the winner’s effort, and explains the relationships between the two optimal

contests. All proofs are presented in Online Appendix A.

Proposition 1 In the contest for maximizing the total effort (D=T) and for maximizing the win-

ner’s effort (D=W), we have

êD = t∗
D
{
[V + (N − 1)K]F (t∗

D
)N−1 −K

[
1− F (t∗

D
)N−1

]}
(1)

ED = K (2)

SD =
K

FN−1(t∗D)
(3)

If K ≥ V F (JW−1(t0))N−1

1−F (JW−1(t0))N−1 , the same contest achieves both objectives.3

It is important to note that the difference between the two optimal contests is captured by the

threshold ability t∗
D

only. The two optimal contests share the same entry fee, which is equal to

the contestants’ liability K. The entry fee allows the designer to provide stronger incentives by

topping up the prize, so it is natural to use it to the maximum extent, i.e., up to the limit K,

for both objectives. The reserve ED is increasing and the shared prize SD is decreasing in the

threshold ability t∗
D
. Intuitively, to achieve a higher threshold ability t∗

D
, a higher reserve is

needed, resulting in a higher probability of sharing the prize. To provide sufficient participation

incentives for low-ability contestants in this case, a lower equally shared prize is needed. It is easy

to see that the cutoff for winner effort maximizing should be weakly higher than that for total effort

maximizing, since the winner is the one with the highest effort and the designer can use a higher

standard. As a result, the reserve is weakly lower and the equally shared prize is weakly higher,

i.e., ET ≤ EW and ST ≥ SW .

Notably, when the liability is substantial, i.e., K ≥ V F (JW−1(t0))N−1

1−F (JW−1(t0))N−1 , we have t
∗T = t∗

W
. In this

situation, the two optimal contests coincide with each other, meaning that the same contest achieves

the dual objectives of maximizing both the total effort and the winner’s effort. For intuition, note

that the cutoff is determined in a way such that contestants with type lower than the cutoff are

getting zero prize in expectation. On one hand, they equally share a proportion of the (positive)

prize when no one’s type is higher than the cutoff which happens with probability F (t∗
D
)N−1;

3Liu et al. (2018) show that the contest (êT , ET , ST ) maximizes the total effort among all symmetric mechanisms.
In contrast, such a stronger result cannot be established for maximizing the winner’s effort. As mentioned in the
conclusion of Liu et al. (2018), if any mechanism is allowed, the optimal mechanism in maximizing the winner’s effort
will feature winner pay only. However, such a mechanism does not fall into the class of contests we focus on since
losers also need to pay for their effort. Nevertheless, (êW , EW , SW ) is optimal among mechanisms where one’s effort
cannot depend on others’ abilities.
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on the other hand, they obtain a negative prize −K, otherwise. The designer can adjust both

the magnitude of the shared prize and the cutoff to maintain a zero prize in expectation. The

first one is less costly for the designer since she mainly cares about effort (t0 < b). When K

becomes large, the shared prize is already set at its maximum, the prize itself, and the only choice

is to move up the cutoff. As a result, regardless of the objective, the cutoff is determined by
V
NF (t∗

D
)N−1 −K(1 − F (t∗

D
)N−1) = 0. When K is small, i.e., K < V F (JW−1(t0))N−1

1−F (JW−1(t0))N−1 , to quantify

the difference between the two optimal contests, we conduct numerical simulations across a wide

range of parameterizations, including variations in ability distribution, group size, and prize budget.

The simulation results are presented in Table B1 of Online Appendix B, showing that neither the

winner’s effort nor the total effort under the two optimal contests differ by more than 8.4%.4

These findings suggest that the two optimal contests are quite effective in achieving both the

winner’s effort and total effort goals, particularly when K is above the threshold. Even when

K is below the threshold, it performs nearly as well in meeting these objectives. This means

that designers can approximately achieve both goals with either optimal contest for any K. The

following proposition summarizes the equilibrium properties under these two optimal contests.

Proposition 2 (i) Both optimal contests induce full participation in equilibrium, and contestants

exert effort according to

eD(t) =

{
0 if t < t∗D(
(V +NK)F (t)N−1 −K

)
−
∫ t
t∗D

(
(V +NK)F (s)N−1 −K

)
ds if t ≥ t∗D

(4)

(ii) Both optimal contests generate more effort when the liability is higher.

For part (i), the equilibrium in the optimal contest features full participation, where every contes-

tant with an ability lower than t∗
D

enters and bids zero, hoping that everyone else has an ability

lower than t∗
D

so that they can equally share the prize. Although they could potentially end up

with a negative prize, their expected prize is zero, making them indifferent between participating

and not participating. On the other hand, a contestant with an ability higher than t∗
D
exerts more

effort as his ability increases and enjoys strictly positive payoffs. For part (ii), the reason is that

whatever is feasible under a certain liability is also feasible with a higher liability, and the designer

can certainly achieve higher effort levels.

3 Experimental Design

In our experimental design, we choose the ability t to be uniformly distributed on the interval [1, 2].

We set the number of contestants to N = 3 and the total prize budget to V = 120. As a result,

4An ad-hoc power calculation suggests that we need around 500 independent observations per treatment to detect
this difference at the 5% significance level and with the moderate 50% power.
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we have F (t) = t − 1, JT (t) = 2t − 2, JW (t) = 4
3 t

3 − 3t2 + 2t − 2
3 , t

∗T =
(

3K
120+3K

) 1
2
+ 1 and

t∗
W

= max

{
1.45,

(
3K

120+3K

) 1
2
+ 1

}
. The parameters for the two optimal contests then become

ê∗
D

= (120 + 2K) t∗
D − (6K + 240) t∗

D2 + (3K + 120) t∗
D3

ED = K

SD =
K(

t∗D − 1
)2

The entry fee ED is always equal to the liability K. In the experimental part, we primarily

refer to the entry fee, but it should be understood that the entry fee and liability have the same

value. Figure 1 illustrates how the cutoff ability, cutoff effort and equally shared prize change as a

function of the liability K. It is worth noting that the cutoff effort decreases in K for the contest

that maximizes the winner’s effort when K is smaller than 10.5. This is because the cutoff ability

is fixed in this case. Therefore, when K increases, the expected prize decreases for the same cutoff

ability, leading to the optimal contest requiring a lower effort threshold. Also note that the shared

prize can be interpreted as follows: the entry fee is refunded, and a portion of the prize budget is

evenly distributed among the participants. In general, the shared prize may or may not exhaust the

entire prize budget. For example, as shown in panel (c), on one hand, the shared prize consistently

uses the full amount of the prize allocated for the total effort maximizing contest, which totals

120/3 +K. On the other hand, the shared prize only uses a proportion of that amount when K is

less than 10.5 for the winner’s effort maximizing contest.

In our between-subject experiment, we compare the performance of optimal contests in six

different treatments that vary the liability K and objectives. These treatments are labeled as

High TW, Medium TW, Low W, Low T, Zero W and Zero T, where T and W indicate whether

the contest can theoretically achieve the objective of maximizing the total effort or the winner’s

effort, respectively. In treatments High TW and Medium TW, the optimal contests are designed to

simultaneously maximize the winner’s effort and total effort. We choose a high liability of 40 (with

a corresponding entry fee of 40, cutoff effort of 136.5, and equally shared prize of 80) and a medium

liability of 10.5 (with a corresponding entry fee of 10.5, cutoff effort of 30.5, and equally shared

prize of 50.5). The medium liability, as shown in Figure 1, is the lowest value that allows the same

contest to achieve the dual objectives of maximizing both total effort and winner’s effort. The high

liability is expected to result in significantly higher total effort and winner’s effort compared to the

medium liability.

The treatments with zero liability serve as benchmarks and represent situations where the

negative prize is not allowed. As shown in Figure 1, the optimal contests are different under the

two objectives. In the Zero W treatment, the cutoff effort is set to 36.5 and the equally shared prize

is set to 0, allowing this contest to theoretically maximize the winner’s effort (but not the total
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Figure 1: The effect of liability (entry fee) on the optimal contests

(a) Cutoff ability (b) Cutoff effort

(c) Shared prize

Notes: The red dashed lines in the figure represent the parameters as a function of the liability K under the optimal

contest that maximizes the total effort and the black solid lines represent the parameters under the optimal contest

that maximizes the winner’s effort. The two lines intersect at K = 10.5. This means that when K ≥ 10.5, the same

contest achieves both objectives. In subfigure (c), when K = 0, the equally shared prize of 40 represented by the red

line becomes irrelevant for the optimal contest that maximizes the total effort, as efforts cannot be negative. In this

case, a standard all-pay auction with no reserve and no entry fee maximizes the total effort.
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Table 1: Experimental Design

Treatments
Entry
Fee

Cutoff
Effort

Cutoff
Ability

Shared
Prize

Expected
Winner’s Effort

Expected
Total Effort

Matching
Group

Subjects

High TW 40 136.5 1.707 80 166.1 210 6 72
Medium TW 10.5 30.5 1.455 50.5 133.6 192.5 6 72
Low W 2 35.5 1.455 10 116.7 176.2 6 72
Low T 2 4.5 1.218 42 115.6 182.9 6 72
Zero W 0 36.5 1.455 0 113.7 172.3 6 72
Zero T 0 0 0 N/A* 112 180 6 72

Notes: * In the Zero T treatment, the shared prize is actually irrelevant since efforts cannot be lower than the cutoff

effort of 0.

effort) under zero liability. In the Zero T treatment, the cutoff effort is set to 0 and the equally

shared prize is set to 40, enabling this contest to theoretically maximize the total effort (but not

the winner’s effort) under zero liability. It is important to note that the equally shared prize of

40 in Zero T is irrelevant, as efforts cannot be strictly lower than the cutoff of 0. Therefore, the

contest effectively becomes a standard all-pay auction with no reserve and no entry fee.

Finally, we recognize that the two zero liability treatments are not structurally identical due to

the effective absence of the shared prize in Zero T, which might undermine its comparability to the

first two treatments with non-zero negative prizes. Therefore, we also design two treatments with

low liability where the negative prize is allowed but its absolute value remains low compared to

the threshold of 10.5. This means that these two contests with low liability cannot simultaneously

maximize the winner’s effort and total effort. Specifically, in both contests, the negative size is set

to 2. In the Low W treatment, the cutoff effort is 35.5 and the equally shared prize is 10; this

contest can theoretically maximize the winner’s effort (but not the total effort). In comparison, in

the Low T treatment, the cutoff effort is 4.5 and the equally shared prize is 42; this contest can

theoretically maximize the total effort (but not the winner’s effort). Table 1 summarizes the design

for each treatment, along with the expected winner’s effort and total effort associated with each

treatment.

In each experimental session, there were 2 matching groups, with 12 participants in each group.

At the beginning of each round, participants within a matching group were randomly assigned into

4 contests, with each contest consisting of 3 players. In each round, each participant received an

endowment of 300 points, which could be used to cover the entry fee or effort cost in the contest.5

Participants first decided whether to enter a contest to compete against other group members to

win prizes. In treatments with positive entry fees, the value of the total prize depended on the

number of group members who chose to enter. Participants were informed that the total prize

consisted of two components: (i) a base prize of 120 points and (ii) the total amount of entry fees

collected from all contestants. However, they did not know the exact number of group members

choosing to enter or the exact value of the total prize until the end of the round. Participants

5However, participants could still incur a loss if they chose a very high effort. This only occurred once in the
entire dataset.
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were incentivized to predict the number of contestants in their group (including themselves) with

a correct guess awarded with 10 points.

If a participant chose not to enter the contest, he had no further decisions to make in that

round. If he chose to enter, he had to pay the entry fee and decide how much effort to exert in the

contest. The effort cost was equal to the effort divided by the participant’s privately-known ability

parameter, which was independently drawn from a uniform distribution with a range of [1.00,

2.00]. Therefore, a participant’s effort cost was inversely related to his ability. Each participant

was privately informed about his ability parameter at the beginning of each round, and its value

was redrawn for each round. To minimize the influence of different ability parameter draws on

behavior, we generated one sequence of this parameter for one session, consisting of 24 participants

interacting for 20 rounds. This same sequence was used in all sessions across all treatments. At the

end of each round, participants were informed about the actual number of contestants, the winner’s

effort, and their earnings. Final earnings were determined by randomly drawing five out of the 20

rounds.

We conducted a total of 18 computerized sessions at the Economics Experimental Laboratory

of the Nanjing Audit University in March 2022 and April 2024. The experiment was implemented

using zTree (Fischbacher, 2007). We recruited 432 subjects from the undergraduate student popula-

tion at the university. The average payment for participating in the experiment was approximately

80 RMB (approximately 12 USD), which included a 15 RMB show-up fee for a 1.5 hour experi-

ment.6 Upon arrival, participants were randomly assigned to computer terminals partitioned from

each other. They were provided with written instructions for the experiment and the experimenter

also read the instructions aloud at the beginning of each session. Participants completed a com-

prehension quiz to ensure they understood the instructions before proceeding. Approximately 25

minutes were dedicated to ensuring participant comprehension in each session. At the end of the ex-

periment, participants completed a short survey that covered their demographics, attitudes toward

risk and competitiveness, and the standard cognitive reflection test. Online Appendix C presents

all experimental instructions.

4 Results

Our main focus is to compare the winner’s effort and total effort across all treatments (Section

4.1). We also present results on the frequency of entering the contest and effort choices (Section

4.2), as well as individual-level analyses of entry and effort choices (Section 4.3).

6The average per-hour earnings in the experiment was substantially higher than the minimum hourly wage which
is about 15-20 RMB in the local region.
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4.1 Winner’s effort and total effort

Figure 2a shows the average winner’s effort across treatments. The quantitative prediction of the

winner’s effort level in each treatment is remarkably accurate. Consistent with our predictions, we

observe the highest level of winner’s effort in High TW, followed by Medium TW. The winner’s

effort in High TW is significantly higher than in any other treatment (p = 0.002 in all five com-

parisons, Wilcoxon ranksum test).7 Compared to Zero W, High TW boosts the winner’s effort by

45.8%. Medium TW increases the winner’s effort by 15.3% relative to Zero W, but the effect is

not significant (p = 0.240). Also as predicted, the winner’s effort levels are similar between Low W

and Low T (p = 0.699) and between Zero W and Zero T (p = 0.818).

The overall pattern of total effort closely mirrors that of the winner’s effort. Figure 2b displays

the average total effort across all treatments. Compared to the baseline treatment Zero T, High TW

increases the total effort by 48.5% (p = 0.004). Medium TW increases the total effort by 15.5%

relative to Zero T, but the effect is not significant (p = 0.132). There is little difference in the

total effort between Low W and Low T (p = 1.000) and between Zero W and Zero T (p = 0.699).

Notably, Figure 2b also shows some differences between the observed and predicted levels of total

effort. While the observed level is higher than the predicted one in High TW (p = 0.028, Wilcoxon

signed-rank test), the direction is reversed but the difference is not significant in any of the other

treatments.

To provide further statistical evidence, we report a random effects regression analysis of the

treatment effects on the winner’s effort and total effort, respectively, as shown in Table B2 of

Online Appendix B. The estimates and post-estimation tests are consistent with the non-parametric

test results. Additionally, we observe a significantly negative round effect, indicating that both the

winner’s effort and the total effort tend to decrease over round, especially during the first 10 rounds

(also see Figure B2 and Figure B3 in Online Appendix B for the evolution of the winner’s effort

and total effort, respectively). To test for robustness, we only include observations from the last 10

rounds in columns (2) and (4) of Table B2. The advantage of High TW over the other treatments,

although slightly narrower, remains highly significant.8

To gain a clearer understanding of the variation in effort level within each treatment, Figure 2c

and Figure 2d plot the empirical CDFs of the winner’s effort and total effort, respectively, across

treatments. We observe that the winner’s effort (and similarly, the total effort) in High TW almost

first-order stochastically dominates that in any other treatment, except for a slightly higher fraction

of zero effort in High TW.9 This observation aligns with the theoretical prediction that a higher

cutoff ability leads to a higher likelihood that all three contestants’ abilities are below that cutoff

7Unless otherwise stated, we treat the average for each matching group as one independent observation.
8For a visual presentation, Figure B1 in Online Appendix B shows the aggregated effort levels for the last 10

rounds.
9We test the difference in the fraction of zero effort between High TW and all other treatments combined, finding

marginally significant effects for both total effort and winner’s effort (p = 0.068, Wilcoxon ranksum test, treating
each matching group as an independent observation).
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Figure 2: Averages and distributions of winner’s effort and total effort

(a) Winner’s effort - average (b) Total effort - average

(c) Winner’s effort - CDF (d) Total effort - CDF

Notes: Standard errors clustered at the matching group level are indicated by bars. For average efforts on the

top panel, the connected line represents the theoretical prediction in each treatment, which is derived from each

individual’s optimal effort function evaluated at their actual ability parameter in each group and in each round.

Note that this is different from the theoretical prediction based on the expected composition of group members with

heterogeneous abilities, as shown in Table 1. The predicted winner’s effort is 174.2, 136.5, 125.3, 120.8, 118.8 and

114.7 in High TW, Medium TW, Low W, Low T, Zero W and Zero T, respectively. The predicted total effort is

220.5, 200.9, 189.0, 196.7, 180.0 and 187.4, respectively. For both winner’s effort and total effort, the average in

High TW is significantly higher than in any other treatment.
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value. Consequently, all contestants are expected to provide zero effort and split the base prize.

Additionally, we observe kinks in the CDF at approximately the cutoff effort of 136.5, as well as at

the two integers 200 and 300 in High TW. This suggests that contestants sometimes bunch their

effort choices around these natural focal points.10

Result 1 The aggregated results provide supporting evidence for the key strength of our contest

mechanism: it achieves the joint objective of maximizing the winner’s effort and total effort through-

out the whole range of liability level, with the observed effort levels closely matching the predicted

ones in each treatment.

4.2 Entry and effort choices

The previous subsection has demonstrated that the empirical patterns of the winner’s effort and

total effort align with the theoretical predictions. In this subsection, we test additional theoretical

predictions about behavior at the individual level. The theory predicts that every player should

enter the contest. In addition, those with an ability parameter below the cutoff value should enter

but exert zero effort, while those with an ability parameter above the cutoff value should exert

higher efforts than the cutoff effort. The positive values of cutoff ability and cutoff effort are

determined by the optimal mechanism and therefore, differ across treatments, as shown in Table 1.

Table 2 presents summary statistics for entry and effort choices across all treatments.11 First,

we observe that the prediction of full entry is not supported in any treatment. The entry rate is

56.5% in High TW, which is significantly lower than that in any other treatment (vs. Medium TW,

p = 0.037; vs. Low W, p = 0.009; vs. Low T, p = 0.004, vs. Zero W, p = 0.065; vs. Zero T,

p = 0.002, Wilcoxon ranksum test). Figure B6 in Online Appendix B shows that the entry rate

is largely stable over round in each treatment. When comparing individuals with high and low

ability (determined by being above and below the cutoff ability in each treatment, as shown in

Table 1), we find that high-ability individuals have a significantly higher entry rate than low-ability

individuals within each treatment (p = 0.002 in each comparison except in Low Wwhere p = 0.015).

Notably, when comparing across treatments, the entry rate for high-ability individuals is over 90%

in High TW and significantly higher than that in any other treatment except for Low W (p < 0.009

in each comparison except in Low W where p = 0.119). This suggests that the low entry rate in

High TW is mainly driven by low-ability individuals, who should be weakly better off by entering

the contest (given that other group members play their equilibrium strategy). By contrast, high-

ability individuals behave mostly consistent with the theory regarding the entry decision, especially

in High TW.

10Figure B4 and Figure B5 in Online Appendix B plot the observed CDFs of the winner’s effort and total effort,
respectively, against the predicted CDFs for each treatment. The predicted CDF is derived from each individual’s
optimal effort function, evaluated at their actual ability parameter in each group and in each round. In general, the
observed CDFs track the predicted ones reasonably well, especially for the total effort.

11For robustness check, we calculate the statistics using data only from last 10 rounds in Table B3 of Online
Appendix B, which shows largely similar results.
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Table 2: Summary statistics for entry and effort choices

High TW Medium TW Low W Low T Zero W Zero T

Entry rate
All 56.5% 63.7% 71.5% 72.6% 63.9% 75.2%

High ability 91.0% 76.3% 83.1% 77.9% 77.3% /
Low ability 41.2% 46.7% 55.9% 49.1% 45.8% /

Above-cutoff rate if enter
All 66.5% 69.6% 60.5% 78.5% 71.1% 100%

High ability 86.6% 82.3% 74.3% 81.5% 81.7% /
Low ability 46.6% 41.6% 32.7% 57.3% 46.8% /

Positive effort but below-cutoff rate if enter
All 10.0% 9.0% 5.0% 3.9% 1.8% 0%

High ability 6.2% 6.2% 4.5% 3.1% 1.7% /
Low ability 13.7% 15.4% 5.8% 9.9% 2.1% /

Zero effort rate if enter
All 23.6% 21.4% 34.6% 17.6% 27.1% 24.7%

High ability 7.2% 11.6% 21.2% 15.4% 16.6% /
Low ability 39.8% 43.0% 61.4% 32.8% 51.1% /

Average effort if enter
All 145.6 100.4 83.8 83.2 90.5 73.7

High ability 192.9 127.3 110.1 92.2 112.2 /
Low ability 98.9 40.9 31.0 21.2 73.7 /

Notes: High (low) ability is determined by whether a contestant’s ability parameter is above (below) the cutoff value

in a round. This cutoff value is 1.218 in Low T, 1.455 in Medium TW, Low W and Zero W, and 1.707 in High TW.

“Above-cutoff rate if enter” refers to the frequency of contestants’ efforts above the cutoff effort, which is 36.5 in

Zero W, 35.5 in Low W, 4.5 in Low T, 30.5 in Medium TW and 136.5 in High TW.

Second, we observe that, in each treatment, high-ability individuals are significantly more likely

to exert effort above the cutoff effort conditional on entry compared to low-ability individuals

(p = 0.002 in each comparison, Wilcoxon ranksum test). This is directionally consistent with

the theory, but the absolute frequency does not align as closely with the theory. According to

the theory, high-ability individuals should always exert effort above the cutoff, while low-ability

individuals should always exert zero effort. It is worth noting that exerting effort strictly below

the cutoff and above zero is a dominated strategy for both high- and low-ability contestants. But

as shown in Table 2, only a small fraction chose this strategy upon entry.12

Third, Figure 3a plots the average effort (unconditional on entry) categorized by finer levels of

12Across all treatments, the frequency of playing the dominated strategy does not significantly differ by gender,
risk attitude, competitiveness, cognitive sophistication, or across different rounds.
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the ability parameter. When the ability parameter is below 1.6, the average effort is very similar

across all treatments. However, when the ability parameter is above 1.6 (which is close to the cutoff

ability of 1.707 in High TW), the average effort is noticeably higher in High TW than in any other

treatment.13 This finding suggests that High TW generates the highest winner’s effort primarily

through the behavior of high-ability contestants.

Finally, Figure 4 compares the observed and predicted effort, sorted by ability, for each treat-

ment. Overall, we observe that low-ability individuals tend to exert too much effort, while high-

ability individuals tend to exert too little effort. This pattern of deviation appears to be most

pronounced in High TW. Interestingly, in our experiment, these two tendencies exactly balance

out, resulting in the winner’s effort at an average level that is remarkably close to the predicted

level. Focusing on High TW, we observe a sharp increase in effort around an ability level of 1.6,

indicating a significant change in behavior as abilities approach the cutoff ability. To further in-

vestigate the relationship between contestants’ ability and their behavior, Figure B7 in Online

Appendix B classifies individual behavior into four categories: no entry, zero effort upon entry, ef-

fort strictly above zero and below the cutoff (i.e., dominated strategy), and finally effort above the

cutoff. We primarily focus on High TW, but for completeness, we also report the categorization for

other treatments. First, individuals with abilities close to the cutoff ability (1.707) from below (i.e.,

low-ability individuals) entered the contest at a much lower rate compared to those with abilities

above the cutoff ability (i.e., high-ability individuals). Indeed, individuals with abilities within the

intervals (1.5, 1.6], (1.6,1.7] and (1.7, 1.8] chose not to enter the contest in 59.4%, 29.9% and 14.5%

of the cases, respectively. Second, as abilities approach the cutoff ability, the frequency of exerting

effort above the cutoff effort also increases dramatically, aligning with the decreased entry rate.

Third, the frequency of playing the dominated strategy of exerting effort below the cutoff accounts

for around 3.2% of all observations, indicating that our participants generally did not employ the

strictly dominated strategy.

Result 2 While High TW produces the highest winner’s effort and total effort as predicted by the

theory, contestants do not always enter the contest and do not always choose the optimal effort

level. This is particularly evident for low-ability individuals when the entry fee is high. They enter

the contest less frequently than they should in equilibrium and when they do enter, they exert effort

above the cutoff effort more often than they should. On the other hand, high-ability individuals

enter the contest in over 90% of the cases with a high entry fee, and they exert significantly more

effort compared to when the entry fee is low or zero (although not as much as predicted by the

theory). As a result, the high entry fee (coupled with a high cutoff effort) drives up the winner’s

13Figure 3b and Figure 3c provide an even more detailed view of the behavior. Figure 3b displays the average
entry rate across different ability levels. It shows that, given a specific ability level, low-ability individuals entered
the contest less frequently in High TW compared to any other treatment. However, the entry rate for high-ability
individuals was similar across all treatments. Figure 3c plots the average effort conditional on entry across different
ability levels. It reveals that, given a specific ability level, individuals exerted more effort in High TW than in any
other treatment almost across the board. Therefore, in High TW, the higher effort exerted by low-ability individuals
was offset by their lower frequency of entering the contest. On the other hand, high-ability individuals not only
exerted more effort but entered the contest as frequently as in any other treatment.
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Figure 3: Effort and entry rate by ability

(a) Average effort

(b) Entry rate (c) Effort conditional on entry

Notes: The ability parameter is categorized into ten groups: [1, 1.1], (1.1, 1.2], . . . , (1.9, 2]. In the figure, we use the

upper bound to indicate each group.
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Figure 4: Observed and predicted effort by ability

Notes: The ability parameter is categorized into ten groups: [1, 1.1], (1.1, 1.2], . . . , (1.9, 2]. In the figure, we use the

upper bound to indicate each group. Standard errors clustered at the matching group level are indicated by bars.

effort primarily through the behavior of high-ability contestants.

4.3 Individual-level results

Next, we turn to individual-level analyses to investigate how individuals decide to enter the contest,

and if so, how they choose their effort. Table 3 presents the results from random effects regressions

for the entry and effort choices. The regressions include treatment indicators and control variables

such as a contestant’s ability parameter in a given round, his belief about the number of entrants

(excluding himself), and individual characteristics collected from the post-experimental question-

naire.14 We report the estimates separately for all rounds and for the last 10 rounds. However,

since the results are similar, we will focus on the results using the full sample in the following

discussion.

14In each round, participants were asked to guess the total number of entrants, including themselves. Since this
belief measure is correlated with their own entry decision, we impute the belief about the number of other entrants
by subtracting the count of own entry from the original belief measure. We use this adjusted belief measure in the
data analysis.
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Table 3: Random effects regressions for entry and effort choices

All rounds Last 10 rounds
Pr(Entry) Effort if enter Pr(Entry) Effort if enter

High TW -0.262*** 61.466*** -0.405*** 65.319***
(0.036) (7.388) (0.045) (9.900)

Medium TW -0.164*** 22.452*** -0.232*** 23.546***
(0.040) (8.174) (0.044) (8.668)

Low W -0.067 9.230 -0.081 9.468
(0.075) (6.274) (0.075) (7.927)

Low T -0.061 7.438 -0.099* 2.440
(0.044) (6.301) (0.051) (8.845)

Zero W -0.177*** 13.108* -0.195*** 12.513
(0.043) (7.937) (0.059) (9.444)

Ability 0.627*** 157.808*** 0.642*** 160.096***
(0.030) (7.361) (0.035) (7.514)

Believe 1 enters -0.067*** 34.997*** -0.090*** 32.254***
(0.022) (5.532) (0.019) (7.770)

Believe 2 enter -0.285*** 42.139*** -0.336*** 42.866***
(0.028) (6.093) (0.030) (8.084)

Female -0.012 7.016 -0.044 4.356
(0.034) (5.186) (0.040) (5.175)

Risk 0.032** 0.135 0.036*** 0.490
(0.012) (2.337) (0.014) (2.754)

Competitive 0.019* -0.466 0.023** -0.767
(0.010) (2.144) (0.011) (2.112)

CRT 0.036*** -2.733 0.034*** -0.628
(0.012) (2.519) (0.012) (2.674)

Round -0.001 -1.597*** 0.001 -1.353***
(0.002) (0.223) (0.002) (0.466)

Clusters 36 36 36 36
N 8640 5810 4320 2927

Notes: Columns (1) and (3) report the average marginal effects from random effects probit regressions on the

entry decision. Columns (2) and (4) report estimates from random effects linear regression on the effort choice for

contestants who have entered the contest. Standard errors clustered at the matching group level are in parentheses.

Zero T serves as the benchmark. “Risk” is self-reported general attitudes toward risk-taking in daily life on the scale

from 1 (not risk-taking at all) to 7 (extremely risk-taking). “Competitive” is self-reported general attitudes toward

being competitive in daily life on the scale from 1 (not competitive at all) to 7 (extremely competitive). “CRT” refers

to the Cognitive Reflection Test using the standard three questions developed by Frederick (2005) to assess cognitive

ability. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Consistent with the descriptive statistics, the results from the regression analysis show that the

high entry fee induces the lowest entry rate but the highest effort level conditional on entry. As

expected, individuals with higher ability are more likely to enter the contest and exert more effort

conditional on entry. The beliefs about the number of other entrants play an important role: the

more individuals expect others to enter the contest, the less likely they are to enter themselves, they
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exert more effort conditional on entry. This finding is intuitive, as more intense competition reduces

the likelihood of winning the prize, thus reducing the incentive to enter. However, once individuals

have made the decision to enter, they tend to bid harder to increase their chances of winning.15

In Table B5 of Online Appendix B, we conduct a series of similar regressions separately for each

treatment. We find that the estimated effects of ability level and belief are largely consistent across

all treatments, although individual behavior in High TW appears to be more sensitive toward

ability and belief than in other treatments.16 In Section 5.2, we will further show that high-ability

players’ beliefs about the intensity of competition can fully explain their underprovision of effort

conditional on entry.

Finally, we find that individual attitudes toward risk and competitiveness, as well as cognitive

sophistication, are associated with entry choices. Specifically, individuals who are more risk-seeking,

more competitive, or cognitively more sophisticated are more likely to enter the contest. However,

Table B5 shows that these factors are not consistently significant across all treatments. Risk

attitudes are significant in High TW, Medium TW and Low W; competitiveness is significant in

High TW; and cognitive sophistication is significant in Zero W and Zero T. Given the variation in

the effects of these individual characteristics across treatments, we refrain from drawing definitive

conclusions based on these findings. Importantly, we conclude that these individual characteristics

cannot fully explain the superior performance of our optimal mechanism compared to the baseline

treatment.

5 Possible explanations for deviations in individual behavior

In this section, we provide further discussion on some important deviations in individual behavior

from the theoretical predictions, especially in High TW. The findings from the High TW treatment

suggest that while the aggregated outcomes are remarkably close to the theoretical predictions, indi-

vidual behavior deviates from the theory in important ways. In particular, low-ability participants

often chose not to enter the contest, although the optimal mechanism is designed to induce full par-

ticipation. Furthermore, high-ability participants provided too little effort upon entry. Subsection

15This finding is consistent with Boosey, Brookins and Ryvkin (2020) who studied an experimental contest with
endogenous entry. They found that when the exact number of other entrants was disclosed, individuals were less
likely to enter the contest if the number of competitors was larger. To further validate this finding, we also conduct
a robustness analysis by adding explanatory variables of whether an individual entered in the previous round and
the number of other entrants in their own group in the previous round. The regression results reported in Table B4
of Online Appendix B show that while an individual’s previous entrance significantly predicts their entry decision
in the current round, the number of other entrants in the previous round significantly predicts effort conditional on
entry. However, the effect sizes of these variables are considerably smaller compared to beliefs.

16Since the optimal effort function is not smooth over ability in the optimal mechanism, we also estimate the
regression separately for high- and low-ability individuals in each treatment except Zero T (see Table B6 and Table B7
in Online Appendix B respectively). In High TW, the estimates suggest that the entry decisions of high-ability
individuals are not sensitive to their ability, which is not surprising given that over 90% of them chose to enter, as
shown in Table 2. By contrast, the entry decisions of low-ability individuals are more sensitive to their ability, and
this higher sensitivity is also observed in their effort choices upon entry. However, in Medium TW and Zero W, the
pattern is somewhat reversed: both the entry and effort choices of high-ability individuals appear to be more sensitive
to their ability than those of low-ability individuals.
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5.1 discusses potential explanations for the non-entry of low-ability players. Subsection 5.2 pro-

vides an explanation for the underprovision of effort of high-ability players, utilizing an additional

treatment in which all players are forced to enter the contest.

5.1 Non-entry of low-ability players

One major deviation is that low-ability players often choose not to enter the contest. The following

proposition shows that non-entry can be rationalized by risk aversion. The proof is presented in

Online Appendix A.

Proposition 3 For the contest (E, ê, S) under risk aversion, consider an equilibrium with the

following structure. There exist two cutoffs t1 and t2 with t < t1 < t2 < t. Players with t ∈ [t, t1] do

not enter, players with t ∈ (t1, t2] enter and put in zero effort; players with t ∈ (t2, t] enter and put

in effort according to the same strictly increasing funciton. Consider the following two nonlinear

equations:

u(0) = F (t2)
N−1u(S − E) +

(
1− F (t2)

N−1
)
u(−E)

F (t2)
N−1u(S − E) =

N−1∑
m=0

Cm
N−1F (t1)

n−1−m (F (t2)− F (t1))
m u(V +mE)− ê

t2

If the solutions of t1 and t2 from the two nonlinear equations are interior, i.e., t < t1 < t2 < t,

then this is the equilibrium.

In the above equilibrium, contestants with ability lower than t1 do not enter. In particular, in

our High TW treatment, such an equilibrium arises when contestants exhibit certain CRRA utlity

function. Further, this equilibrium reduces to the equilibrium in our main result when contestants

are risk neutral. Our experimental data provide consistent evidence on the role of risk aversion.

Table B7 in Online Appendix B shows that, among low-ability individuals, more risk seeking types

are more likely to enter the contest in High TW.

Further, a non-equilibrium-based explanation is that the behavior of non-entrants is empirically

optimal, as entering the contest would only reduce their actual payoff. To test this possibility, we

conduct additional data analysis by allowing non-entrants to counterfactually make the theoretically

optimal choice by entering the contest and providing zero effort. We then compare their counter-

factual payoff to their actual payoff. The result shows that in High TW low-ability non-entrants

would indeed have been worse off if they had chosen to enter, with average payoff decreasing from

300 to 288.5. The next subsection will provide further supporting evidence for this explanation.

In summary, it appears that both risk aversion and non-entrance being empirically optimal can

explain low-ability players’ tendency to not enter the contest. Having said that, we do not suggest

these are the only possible channels. For instance, another possibility is loss aversion, as even

though entering is optimal in equilibrium, a loss-averse low-ability contestant may still choose to

opt out of the contest due to the potential psychological cost of losing. Fully characterizing the
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impact of loss aversion on behavior in our contests is challenging. Our mechanism design approach

is not directly applicable to a model that incorporates additional behavioral assumptions about

individual preferences, such as loss aversion. While there is limited existing research exploring the

role of loss aversion in contests (Gill and Stone, 2010; Dato, Grunewald and Müller, 2018; Fu et al.,

2022), Boosey, Brookins and Ryvkin (2020) is, as far as we know, the only paper that incorporates

loss aversion to explain individual endogenous entry into a contest. However, their contest model

assumes complete information, which makes it relatively easier to derive the equilibrium impact of

loss aversion on behavior. Further research is needed to fully understand the implications of loss

aversion in our specific contest setting.17

5.2 An additional treatment with mandatory entry

Since theory anticipates full entry, it is of interest to consider how individual behavior would be

shaped when participants are forced to enter. To this end, we implement another treatment, called

High Forced, which is identical to the High TW treatment except that during the first 10 rounds

contest entry is mandatory. The purpose of this treatment is twofold. First, we ask whether

mandatory entry helps contestants to focus on their effort decisions and therefore aligns their

effort choices more closely with the theoretical predictions. Second, since mandatory entry is only

implemented in the first 10 rounds, we can examine whether experiencing full participation affects

the voluntary entry and effort decisions in the following 10 rounds, where the game is identical to

that in the High TW treatment. We conducted three sessions with another 72 subjects from the

same student pool for the High Forced treatment in April 2024.

Figure 5 shows the average winner’s effort and total effort for High Forced. For the ease of

comparison, we also include data from High TW in the figure. During the first 10 rounds, compared

to voluntary entry, mandatory entry substantially increases both types of effort (p= 0.002, Wilcoxon

ranksum test), which are also much higher than predicted levels. However, during the last 10 rounds,

there is virtually no difference between the two treatments when mandatory entry is removed (p =

0.818 for winner’s effort and p = 0.937 for total effort). Table B8 in Online Appendix B provides

complementary statistical evidence from random effects regressions.18

Turning to aggregated results on effort choices, as shown in Table 4, under mandatory entry,

high-ability contestants exert effort above the cutoff effort (trivially conditional on entry) in 86% of

17Yet, another possible explanation is that, since low-ability contestants are indifferent between entering and not
entering in equilibrium, we would naturally expect them to enter only half of the time in the experiment. However,
Table 2 shows that in High TW, especially during the last 10 rounds, low-ability players entered the contest less than
half of the time, indicating that their behavior is not simply the result of randomness.

18Figure B8 and Figure B9 in Online Appendix B show the evolution of the winner’s effort and total effort,
respectively, for High Forced. Both figures show a sharp drop in effort beginning from the 11th round. Figure B10a
and Figure B10b plot the empirical CDFs of the winner’s effort and total effort, respectively, for High Forced. Both
figures show that the CDF under mandatory entry first-order stochastically dominates that under voluntary entry.
Figure B11 and Figure B12 plot the observed CDFs of the winner’s effort and total effort, respectively, against the
predicted CDFs for High Forced. Both figures show that the observed CDF under mandatory entry also first-order
stochastically dominates the predicted one. By contrast, when mandatory entry is removed during the last 10 rounds,
the observed CDF closely tracks the predicted one.
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Figure 5: Winner’s effort and total effort in High TW and High Forced

(a) Winner’s effort (b) Total effort

Notes: Standard errors clustered at the matching group level are indicated by bars. The connected line represents

the theoretical prediction, which is derived from each individual’s optimal effort function evaluated at their actual

ability parameter in each group and in each round. Note that this is different from the theoretical prediction based

on the expected composition of group members with heterogeneous abilities, as shown in Table 1. And the predicted

effort can also differ between the first and last 10 rounds. The predicted winner’s effort is 170.4 and 178.0 for the

first and last 10 rounds, respectively. The predicted total effort is 214.1 and 227.0 for the first and last 10 rounds,

respectively.

the time, which is similar to the rate of 90% under voluntary entry (p = 0.437, Wilcoxon ranksum

test). However, low-ability contestants do so in 37% of the time, which is lower than the rate of 55%

under voluntary entry (p = 0.026). Further, under mandatory entry, high-ability contestants exert

significantly more effort (trivially conditional on entry) than their counterparts under voluntary

entry (p = 0.002), whereas low-ability ones exert 22% less effort (97.3 versus 120, p = 0.180).

Hence, mandatory entry appears to move effort choices of low-ability contestants somewhat closer

to the theoretical prediction (i.e., always exerting zero effort). However, this effect is weak and

unsustainable: when mandatory entry is removed during the last 10 rounds, low-ability contestants

behave similarly under both treatments (67.6 versus 70.3). In particular, they still choose to

enter the contest in only 36% of the time.19 Meanwhile, mandatory entry encourages high-ability

contestants to exert even higher effort, thereby driving up the winner’s effort as well as total effort.

This effect, however, is also short-lived: when mandatory entry is removed, high-ability contestants’

behavior also becomes similar under both treatments. Figure B14 in Online Appendix B shows even

finer details on the relationship between abilities and effort/entry choices. It provides consistent

evidence that (i) the much higher winner’s effort and total effort observed under mandatory entry is

attributed to both the full participation and the higher effort provided by high-ability contestants;

19Figure B13 in Online Appendix B shows the evolution of contest entry rate for High Forced, indicating an
immediate drop in the entry rate beginning from the 11th round.
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(ii) when mandatory entry is removed, the experience of forced participation in earlier rounds has

almost no effect on behavior of either high- or low-ability contestants in later rounds.

Table 4: Summary statistics for entry and effort choices for High TW and High Forced

High TW High Forced High TW High Forced

First 10 rounds Last 10 rounds

Entry rate
All 60.0% 100% 53.1% 51.4%

High ability 90.7% 100% 91.2% 84.2%
Low ability 46.8% 100% 35.4% 36.2%

Above-cutoff rate if enter
All 70.6% 51.2% 61.8% 57.6%

High ability 89.8% 85.6% 83.7% 83.3%
Low ability 54.7% 36.5% 35.6% 29.8%

Positive effort but below-cutoff rate if enter
All 9.0% 4.7% 11.0% 9.2%

High ability 4.6% 0.9% 7.7% 4.7%
Low ability 12.7% 6.3% 14.9% 14.0%

Zero effort rate if enter
All 20.4% 44.0% 27.2% 33.2%

High ability 5.6% 13.4% 8.7% 12.0%
Low ability 32.6% 57.1% 49.4% 56.2%

Average effort if enter
All 153.4 143.4 136.7 143.2

High ability 193.6 250.7 192.3 213.3
Low ability 120.0 97.3 70.3 67.6

Notes: High (low) ability is determined by whether a contestant’s ability parameter is above (below) the cutoff value

of 1.707 in a round. “Above-cutoff rate if enter” refers to the frequency of contestants’ efforts above the cutoff effort

of 136.5.

Why does the experience of forced participation have almost no impact on low-ability indi-

viduals’ behavior, especially their entry decisions, in later rounds? As the counterfactual analysis

reported in subsection 5.1 suggests, all else equal, low-ability non-entrants could have been worse off

if they had chosen to enter the contest. Here, we consistently find that during the first 10 rounds,

average payoff of low-ability individuals under mandatory entry is significantly lower than that

under voluntary entry (248.6 vs. 283.1, p = 0.002, Wilcoxon ranksum test). Comparing low-ability

individuals’ entry choices across rounds within High Forced, their average payoff significantly in-

creases to 299.3 during the last 10 rounds when mandatory entry is removed (p = 0.002). Hence,

the experience of forced participation is mostly negative for low-ability players, thus leading them
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to stay outside of the contest in later rounds.20

Why do high-ability contestants exert higher effort under mandatory entry compared to vol-

untary entry? As it turns out, this can be explained by their belief about the number of other

contestants. Under voluntary entry, high-ability players enter the contest in over 90% of the time

but tend to exert effort lower than the predicted level (see Figure 4). Their behavior may be

a rational response to the anticipation of a lower number of entrants than the equilibrium level.

Indeed, off the equilibrium path, if one or more contestants choose not to enter the contest, the

remaining entrants should exert lower effort than the level predicted on the equilibrium path. It

is consistent with the evidence from subsection 4.3 that individual effort tends to be higher when

they believe in a greater number of other group members having entered the contest. The com-

parison to mandatory entry allows us to provide further evidence. In particular, we test whether

under voluntary entry those who believe that all other group members have chosen to enter the

contest exert a similar level of effort compared to those under mandatory entry. Table B9 in Online

Appendix B provides evidence from a regression analysis, showing that any treatment difference in

effort conditional on entry is eliminated once controlling for such a belief.

Result 3 Mandatory entry does not help align behavior more closely with the theoretical predic-

tions, nor does the experience of mandatory entry influence behavior. However, the experimental

data from the High Forced treatment provide insights into the observed behavioral deviations. For

low-ability individuals, the reason for their frequent choice not to enter the contest is that their

payoff is significantly lower when forced to participate. This is consistent with the counterfactual

analysis reported in subsection 5.1 and provides a complementary explanation based on risk aver-

sion. For high-ability individuals, the tendency to exert effort below the predicted level stems from

their skepticism about full participation. When we fix this belief by implementing mandatory entry,

their effort levels are largely restored to the predicted levels.

6 Conclusion

This paper introduces an optimal contest with negative prizes that can simultaneously maximize

both the winner’s effort and the total effort. The optimal design can be implemented by a modified

all-pay auction with entry fee and reserve. In equilibrium, every contestant enters the contest, and

only those with sufficiently high ability exert effort above the cutoff level, while low-ability entrants

provide zero effort. We test the theoretical predictions through a laboratory experiment and find

that, on average, both winner’s effort and total effort closely align with the predicted levels. The

observed deviations in individual behavior can be explained by risk aversion, negative experience

associated with entering the contest, and players’ beliefs about the intensity of competition.

20Under mandatory entry, low-ability contestants could have been better off if they had always provided zero effort,
resulting in average payoff of 316.4, which is higher than the outside payoff of 300 (which, of course, is not an available
option).
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In practice, it is likely that different contestants may have different levels of liability. In many

situations, such as B2B settings, the designer often possesses knowledge of contestants’ heteroge-

neous liability levels, as they typically conduct extensive research on their customers. Suppose

contestant i has liability Ki, where K1 > K2 > ... > Kn, and these values are known by the

designer. It is natural to ask what the optimal contest among the structure (E, ê, S) would be.

If the entry fee level E is such that Ki ≥ E > Ki+1, we know that only the first i contestants

can afford to enter the contest. Given this, our construction of the optimal contest in Proposition

1 can be used to derive the optimal value for ê and S with the modification that the number of

contestants is i instead of n. As a result, the search of the optimal contest is reduced to the search

of the optimal entry fee. To determine the optimal entry fee, we can, without loss of generality,

restrict the analysis to a set of n options {K1,K2, . . . ,Kn}. This is because for any entry fee E

such that Ki+1 < E < Ki, the designer would benefit from choosing the optimal contest with an

increased entry fee set to Ki (note that the number of entrants does not change) by Proposition 2.

It is obvious that the optimal entry fee does not have to be at Kn, and can induce partial entry:

for instance, when Kn is much lower than Kn−1, it becomes too costly to induce contestant n to

participate.21

A practical implication of our study is that contest designers may not need to choose between

maximizing the winner’s effort and maximizing the total effort in a contest. Our optimal contest de-

sign suggests the possibility of achieving both objectives simultaneously, which are among the most

important goals of a contest. The experimental support for this potential ”killing-two-birds-with-

one-stone” property provides encouraging evidence for its practical applicability and effectiveness.

An important avenue for future research is to examine whether this observed property holds in

contests with a larger number of participants, compared to our relatively small-scale experiment.

Larger-scale contests are more likely to attract high-ability participants, but our finding that high-

ability contestants exert lower-than-predicted effort raises questions about whether the objective

of maximizing the winner’s effort can still be achieved. At the same time, the inherently higher

competitiveness of larger-scale contests could lead to increased effort levels overall. Determining

which effect dominates in such settings requires further empirical investigation, and we leave this

question open for future exploration.
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Online Appendix

A Omitted proofs

Proof for Proposition 1: To derive the optimal contest in maximizing the winner’s effort, we can

adapt the mechanism design approach in Liu et. al (2018). A direct mechanism is formally defined

below. Let t̃i ∈ [a, b] be contestant i’s reported ability. Given the profile of reports t̃ = (t̃1, · · · , t̃N ),

the contest designer gives a prize of vi(̃t) to contestant i and demands an effort of ei(̃t) from him.22

Since the contests we consider have the feature that losers also need to pay for the effort, we restrict

to a subset of direct mechanism where ei(̃t) = ei(t̃i). Define the expected prize of contestant i with

report t̃i as

Vi(t̃i) =

∫
t−i

vi(t̃i, t−i)f−i(t−i)dt−i, (5)

where t−i = (t1, · · · , ti−1, ti+1, · · · , tN ) and f−i(t−i) denotes the density of t−i.

Given that the other contestants truthfully report their abilities, contestant i’s expected payoff

when reporting t̃i is

ui(t̃i, ti) =

∫
t−i

vi(t̃i, t−i)f−i(t−i)dt−i −
ei(t̃i)

ti

= Vi(t̃i)−
ei(t̃i)

ti
.

The contest designer’s objective can be expressed as:

max
{vi(·),ei(·),∀i}

R =

∫
t

[
max

i
{ei(ti)}+t0(V −

∑
i

vi(t))

]
f(t)dt (6)

subject to the following feasibility constraints:

ui(ti, ti) ≥ ui(t̃i, ti), ∀t̃i, ti, ∀i, (7)

ui(ti, ti) ≥ 0,∀ti,∀i, (8)∑
i

vi(t) ≤ V,∀t, (9)

vi(t) ≥ −K,∀t,∀i, (10)

ei(t) ≥ 0,∀t,∀i. (11)

The feasibility constraints consist of five parts: (7) is the incentive compatibility constraint, (8) is

22As a contestant’s payoff is linear in effort and prize, it is without loss of generality to focus on a deterministic
mechanism. In fact, vi(̃t) and ei(̃t) can be interpreted as the expected prize and the expected effort.
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the participation constraint, (9) is the designer’s budget constraint, (10) is the lower bound imposed

on prizes, and (11) is the nonnegative effort constraint.

Define ũi(t̃i, ti) = ti · ui(t̃i, ti). Then

ũi(t̃i, ti) = tiVi(t̃i)− ei(t̃i).

Constraints (7) and (8) can be rewritten in terms of ũi(·, ·). From (7) and the Envelope Theorem,

we have
dũi(ti, ti)

dti
=

∂ũi(t̃i, ti)

∂ti

∣∣∣∣
t̃i=ti

= Vi(ti),

which leads to

ũi(ti, ti)− ũi(a, a) =

∫ ti

a
Vi(s)ds.

Standard derivations such as those in Myerson (1981) lead to the following lemma. The proof is

omitted here.

Lemma 1 Mechanism (v(·), e(·)) is feasible if and only if the following conditions hold together

with (9), (10) and (11):

ei(ti) = tiVi(ti)−
∫ ti

a
Vi(s)ds− a · ui(a, a), ∀ti,∀i, (12)

Vi(t
′
i) ≥ Vi(ti), ∀t′i > ti, ∀i, (13)

ui(a, a) ≥ 0, ∀i.

Note that in the optimal mechanism, we must have ui(a, a) = 0, i.e., the lowest ability contestant

must earn zero informational rent. If ui(a, a) > 0, the contest designer can simply decrease the

informational rent for every ability and yield a higher level of expected total effort. Given (5) and

(12), we can replace effort e(·) by the prize function v(·) and rewrite the contest designer’s objective

function as

max

∫
t

∑
i

[
JW (ti)− t0

]
vi(t)f(t)dt+ t0V. (14)

Therefore, the contest designer’s optimization problem can be restated as maximizing (14), subject

to (9), (10), (11), (12) and (13). It is easy to see that, compared with Liu et. al (2018), the only

difference is that the virtual ability function now is JW (ti) instead of JT (ti). It then follows that

the contest proposed in the proposition is optimal.

When K > max
{

V F (JT−1(0))N−1

1−F (JT−1(0))N−1 ,
V F (JW−1(0))N−1

1−F (JW−1(0))N−1

}
= V F (JW−1(0))N−1

1−F (JW−1(0))N−1 , we have t∗
T
(K) =

t∗
W
(K) = F−1(( NK

V+NK )
1

N−1 ), and thus the two optimal contests are the same. Q.E.D.

Proof for Proposition 3: Given the proposed equilibrium structure, we can calculate a player’s
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payoff for the following actions.

No entry: u(0).

Enter and bid zero: F (t2)
N−1u(S − E) +

(
1− F (t2)

N−1
)
u(−E).

Enter and bid ê:

N−1∑
m=0

Cm
N−1F (t1)

N−1−m (F (t2)− F (t1))
m u(V +mE) +

(
1− F (t2)

N−1
)
u(−E)− ê

t
. (15)

Note that the payoff from the first two options does not depend on a player’s ability. We can

pin down the two cutoffs. For a player with ability t1, he is indifferent between no entering and

entering and bidding zero. We thus have

u(0) = F (t2)
N−1u(S − E) +

(
1− F (t2)

N−1
)
u(−E)

For player with ability t2, he is indifferent between entering and bidding zero or bidding ê. We

thus have

F (t2)
N−1u(S − E) +

(
1− F (t2)

N−1
)
u(−E) (16)

=

N−1∑
m=0

Cm
N−1F (t1)

N−1−m (F (t2)− F (t1))
m u(V +mE) +

(
1− F (t2)

N−1
)
u(−E)− ê

t2

F (t2)
N−1u(S − E)

=
N−1∑
m=0

Cm
N−1F (t1)

N−1−m (F (t2)− F (t1))
m u(V +mE)− ê

t2
(17)

These two indifference conditions are exactly the two nonlinear equations in the proposition. If

the solutions are interior, then we have verified the structure of the equilibrium. It is then routine

to show that no types would have incentive to deviate given the equilibrium. Q.E.D.
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B Additional Figures and Tables
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Figure B1: Averages and distributions of winner’s effort and total effort during the last 10 rounds

(a) Winner’s effort - average (b) Total effort - average

(c) Winner’s effort - CDF (d) Total effort - CDF

Notes: Standard errors clustered at the matching group level are indicated by bars. For average efforts on the

top panel, the connected line represents the theoretical prediction in each treatment, which is derived from each

individual’s optimal effort function evaluated at their actual ability parameter in each group and in each round.

Note that this is different from the theoretical prediction based on the expected composition of group members with

heterogeneous abilities, as shown in Table 1. The predicted winner’s effort is 174.2, 136.5, 125.3, 120.8, 118.8 and

114.7 in High TW, Medium TW, Low W, Low T, Zero W and Zero T, respectively. The predicted total effort is

220.5, 200.9, 189.0, 196.7, 180.0 and 187.4, respectively. For both winner’s effort and total effort, the average in

High TW is significantly higher than in any other treatment.
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Figure B2: Winner’s effort over round

Figure B3: Total effort over round
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Figure B4: CDFs of observed and predicted winner’s effort by treatment
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Figure B5: CDFs of observed and predicted total effort by treatment
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Figure B6: Frequency of entering the contest over round
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Figure B7: Categorization of behavior by ability

Notes: The ability parameter is categorized into ten groups: [1, 1.1], (1.1, 1.2], . . . , (1.9, 2]. In the figure, we use the

upper bound to indicate each group.
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Figure B8: Winner’s effort over round in High TW and High Forced

Figure B9: Total effort over round in High TW and High Forced
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Figure B10: CDFs of winner’s effort and total effort in High TW and High Forced

(a) Winner’s effort (b) Total effort
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Figure B11: CDFs of observed and predicted winner’s effort by treatment in High TW and
High Forced

13



Figure B12: CDFs of observed and predicted total effort by treatment in High TW and High Forced
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Figure B13: Frequency of entering the contest over round in High TW and High Forced
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Figure B14: Average effort by ability in High TW and High Forced

(a) Average effort

(b) Entry rate (c) Effort conditional on entry

Notes: The ability parameter is categorized into ten groups: [1, 1.1], (1.1, 1.2], . . . , (1.9, 2]. In the figure, we use the

upper bound to indicate each group.
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Table B1: Numerical calculations of percentage improvement of winner’s effort and total effort

Panel A: Winner’s effort improvement using the winner effort maximizing contest
as opposed to the total effort maximizing contest

Weibull F (t) = 1− exp(−tθ) Power F (t) = (t− 1)θ

N=2 4 6 8 N=2 3 4 5

θ=1 1.42% 4.37% 4.75% 4.22% θ=1 2.30% 1.46% 0.95% 0.67%
1.25 1.47% 3.94% 3.71% 3.01% 1.5 1.74% 1.13% 0.68% 0.44%
1.5 2.19% 3.83% 3.02% 2.23% 2 1.48% 0.88% 0.50% 0.31%
1.75 2.65% 3.49% 2.41% 1.70% 2.5 1.21% 0.70% 0.38% 0.23%
2 2.22% 2.86% 1.90% 1.33% 3 1.07% 0.58% 0.30% 0.18%

Quadratic F (t) = θt2 + (1− 3θ)t+ (2θ − 1) Exponential F (t) = 1− exp(−θt)

N=2 3 4 5 N=2 5 8 11

θ=-0.4 1.42% 1.12% 0.84% 0.64% θ=1 1.55% 4.87% 4.26% 3.32%
-0.2 1.84% 1.31% 0.92% 0.67% 3 1.48% 4.81% 4.24% 3.32%
0 2.30% 1.46% 0.95% 0.67% 5 1.55% 4.87% 4.25% 3.32%
0.2 2.34% 1.49% 0.93% 0.62% 7 1.33% 4.70% 4.21% 3.31%
0.4 2.09% 1.40% 0.84% 0.55% 9 1.71% 4.97% 4.29% 3.32%

Panel B: Total effort improvement using the total effort maximizing contest
as opposed to the winner effort maximizing contest

Weibull F (t) = 1− exp(−tθ) Power F (t) = (t− 1)θ

N=2 4 6 8 N=2 3 4 5

θ=1 1.46% 4.90% 6.44% 7.97% θ=1 3.70% 4.27% 4.40% 4.04%
1.25 1.62% 5.30% 6.35% 7.57% 1.5 2.78% 3.33% 3.46% 3.43%
1.5 1.59% 6.19% 6.03% 6.24% 2 2.60% 3.06% 3.05% 2.81%
1.75 1.58% 5.04% 7.14% 5.74% 2.5 2.27% 2.92% 2.68% 2.18%
2 2.48% 4.60% 4.93% 5.90% 3 2.09% 2.50% 2.41% 2.05%

Quadratic F (t) = θt2 + (1− 3θ)t+ (2θ − 1) Exponential F (t) = 1− exp(−θt)

N=2 3 4 5 N=2 5 8 11

θ=-0.4 3.84% 4.36% 4.42% 4.41% θ=1 1.45% 5.89% 7.51% 8.00%
-0.2 3.94% 4.36% 4.40% 4.38% 3 1.52% 5.79% 7.41% 8.10%
0 3.70% 4.27% 4.40% 4.04% 5 1.32% 5.89% 7.61% 8.10%
0.2 3.34% 3.86% 4.14% 3.90% 7 1.65% 5.60% 7.41% 8.09%
0.4 2.83% 3.63% 3.68% 3.56% 9 1.52% 5.79% 7.41% 8.40%

Notes: We examined four different one-parameter functional forms of the ability distribution and also varied the

group size N . The percentage in each cell is the numerical calculation of the ratio improvement in terms of winner’s

effort (Panel A) and total effort (Panel B) when comparing the two optimal mechanisms, conditional on a specific

ability distribution and group size. The liability K is always set to 0 which maximizes the ratio improvement for any

given set of parameters. Since the optimal effort is linear in the prize budget V , the percentage improvement does

not depend on the prize budget.
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Table B2: Random effects regressions on the winner’s effort and total effort

Winner’s effort Total effort

(1) All rounds (2) Last 10 rounds (3) All rounds (4) Last 10 rounds

High TW 59.058*** 49.008*** 80.581*** 59.946***
(7.388) (10.328) (13.479) (18.016)

Medium TW 18.338* 10.638 25.685 15.404
(10.832) (10.166) (19.137) (15.379)

Low W 9.465 1.988 13.604 9.146
(8.046) (8.464) (14.409) (13.001)

Low T 11.475 -0.666 14.785 -1.492
(8.719) (9.827) (15.216) (14.320)

Zero W 2.798 0.496 7.192 4.054
(8.016) (9.029) (14.969) (13.139)

Round -1.518*** 0.184 -2.726*** 0.716
(0.359) (0.799) (0.525) (1.269)

Constant 135.796*** 113.831*** 194.924*** 146.587***
(6.495) (14.123) (12.894) (22.270)

Clusters 36 36 36 36
N 2880 1440 2880 1440

H0: High TW = Medium TW p < 0.001 p < 0.001 p = 0.001 p = 0.014
H0: High TW = Low W p < 0.001 p < 0.001 p < 0.001 p = 0.002
H0: High TW = Low T p < 0.001 p < 0.001 p < 0.001 p = 0.001
H0: High TW = Zero W p < 0.001 p < 0.001 p < 0.001 p = 0.001
H0: Medium TW = Low W p = 0.388 p = 0.270 p = 0.479 p = 0.637
H0: Medium TW = Low T p = 0.526 p = 0.224 p = 0.540 p = 0.245
H0: Medium TW = Zero W p = 0.130 p = 0.230 p = 0.292 p = 0.396
H0: Low W = Low T p = 0.802 p = 0.720 p = 0.925 p = 0.375
H0: Low W = Zero W p = 0.358 p = 0.813 p = 0.600 p = 0.630

Notes: Standard errors clustered at the matching group level are in parentheses. Zero T serves as the benchmark.
∗∗∗ p < 0.01.
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Table B3: Summary statistics for entry and effort choices - last 10 rounds

High TW Medium TW Low W Low T Zero W Zero T

Entry rate
All 53.1% 62.6% 73.2% 73.6% 66.3% 77.8%

High ability 91.2% 73.5% 83.3% 79.8% 79.0% /
Low ability 35.4% 45.7% 57.4% 49.7% 46.5% /

Above-cutoff rate if enter
All 61.8% 67.0% 62.0% 80.2% 66.9% 100%

High ability 83.7% 78.6% 74.2% 83.2% 78.3% /
Low ability 35.6% 38.0% 34.6% 61.6% 36.6% /

Positive effort but below-cutoff rate if enter
All 11.0% 10.0% 5.1% 3.6% 2.5% 0%

High ability 7.7% 7.8% 3.8% 2.8% 2.9% /
Low ability 14.9% 15.5% 8.0% 8.2% 1.5% /

Zero effort rate if enter
All 27.2% 23.1% 32.8% 16.2% 30.6% 23.6%

High ability 8.7% 13.7% 21.9% 14.0% 18.8% /
Low ability 49.4% 46.5% 57.4% 30.1% 61.8% /

Average effort if enter
All 136.7 92.1 76.0 70.7 81.4 67.6

High ability 192.3 117.7 99.2 79.2 102.2 /
Low ability 70.3 28.3 23.7 17.5 26.3 /

Notes: High (low) ability is determined by whether a contestant’s ability parameter is above (below) the cutoff value

in a round. This cutoff value is 1.218 in Low T, 1.455 in Medium TW, Low W and Zero W, and 1.707 in High TW.

“Above-cutoff rate if enter” refers to the frequency of contestants’ efforts above the cutoff effort, which is 36.5 in

Zero W, 35.5 in Low W, 4.5 in Low T, 30.5 in Medium TW and 136.5 in High TW.
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Table B4: Random effects regressions for entry and effort choices: Robustness check

All rounds Last 10 rounds
Pr(Entry) Effort if enter Pr(Entry) Effort if enter

High TW -0.273*** 65.871*** -0.392*** 65.890***
(0.035) (7.909) (0.042) (10.190)

Medium TW -0.170*** 25.199*** -0.225*** 23.982***
(0.039) (8.337) (0.042) (8.900)

Low W -0.071 9.903 -0.081 9.283
(0.071) (6.748) (0.074) (8.093)

Low T -0.075* 9.852 -0.097* 2.323
(0.042) (6.557) (0.050) (8.966)

Zero W -0.173*** 14.589* -0.190*** 12.921
(0.041) (8.195) (0.057) (9.612)

Ability 0.639*** 160.097*** 0.645*** 160.033***
(0.029) (7.560) (0.034) (7.519)

Believe 1 enters -0.090*** 33.533*** -0.090*** 31.461***
(0.019) (5.510) (0.019) (7.729)

Believe 2 enter -0.334*** 40.056*** -0.337*** 41.021***
(0.025) (5.832) (0.030) (7.983)

Own entry 0.087*** -3.129 0.055*** -1.596
in previous round (0.013) (2.219) (0.014) (2.767)
No. of other entrants 0.013* 5.271*** -0.010 3.288
in previous round (0.007) (1.928) (0.010) (2.123)
Female -0.013 6.990 -0.041 4.212

(0.031) (4.904) (0.038) (5.148)
Risk 0.028** 0.181 0.034*** 0.551

(0.011) (2.461) (0.013) (2.732)
Competitive 0.018** -0.568 0.021** -0.704

(0.009) (2.107) (0.010) (2.099)
CRT 0.034*** -2.647 0.032*** -0.563

(0.011) (2.574) (0.012) (2.642)
Round -0.001 -1.924*** 0.000 -1.382***

(0.002) (0.246) (0.002) (0.468)

Clusters 24 36 36 36
N 8208 5506 4320 2927

Notes: Columns (1) and (3) report the average marginal effects from random effects probit regressions on the

entry decision. Columns (2) and (4) report estimates from random effects linear regression on the effort choice for

contestants who have entered the contest. Standard errors clustered at the matching group level are in parentheses.

Zero T serves as the benchmark. “Risk” is self-reported general attitudes toward risk-taking in daily life on the scale

from 1 (not risk-taking at all) to 7 (extremely risk-taking). “Competitive” is self-reported general attitudes toward

being competitive in daily life on the scale from 1 (not competitive at all) to 7 (extremely competitive). “CRT” refers

to the Cognitive Reflection Test using the standard three questions developed by Frederick (2005) to assess cognitive

ability. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B8: Random effects regressions on the winner’s effort and total effort in High TW and
High Forced

Winner’s effort Total effort

First 10 rounds Last 10 rounds First 10 rounds Last 10 rounds

High Forced 88.996*** 4.100 153.958*** 4.100
(10.129) (8.849) (16.310) (8.849)

Round 5.512** -4.141** 2.444 -4.141**
(2.233) (2.111) (3.515) (2.111)

Constant 161.831*** 229.884*** 262.685*** 229.884***
(14.618) (30.388) (26.556) (30.388)

Clusters 12 12 12 12
N 480 480 480 480

Notes: Standard errors clustered at the matching group level are in parentheses. High TW serves as the benchmark.
∗∗∗ p < 0.01.
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Table B9: Random effects regressions for effort conditional on entry in High TW and High Forced
during the first 10 rounds

Effort if enter

High Forced 3.312
(15.746)

Ability 246.109***
(17.331)

Believe 1 enters 59.273***
(20.660)

Believe 2 enter 77.299***
(25.578)

Female -16.105
(10.297)

Risk 11.770*
(6.219)

Competitive 2.436
(5.043)

CRT -4.710
(4.110)

Round 2.036*
(1.061)

Constant -359.528***
(54.180)

Clusters 12
N 1152

Notes: “Believe 2 enter” is always coded as 1 for the first 10 rounds in High Forced since this is always true by

design. The table reports estimates from random effects linear regression on the effort choice for contestants who

have entered the contest. Standard errors clustered at the matching group level are in parentheses. High TW serves

as the benchmark. “Risk” is self-reported general attitudes toward risk-taking in daily life on the scale from 1

(not risk-taking at all) to 7 (extremely risk-taking). “Competitive” is self-reported general attitudes toward being

competitive in daily life on the scale from 1 (not competitive at all) to 7 (extremely competitive). “CRT” refers to

the Cognitive Reflection Test using the standard three questions developed by Frederick (2005) to assess cognitive

ability. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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C Experimental Instructions

C.1 Instructions for Medium TW

[The instructions for High TW, Low T and Low W are omitted here since they only differ in terms

of the entry fee and minimum amount of investment.]

You are about to participate in an experiment. The instructions are the same for all participants.

Please read them carefully. No communication is allowed during the experiment. If you have any

question, please raise your hand and an experimenter will come to help you.

You have received 15 Yuan for showing up on time. You may earn more money by making

decisions in the experiment. The points you may earn depends on your decision and on other

participants’ decisions. At the end of the experiment, all points you earn will be converted to RMB

at the rate of 25 points for 1 RMB. Both your identity and your decisions are strictly anonymous

throughout the experiment.

Overview

This experiment consists of 20 periods. At the beginning of each period, you will be randomly

matched into a group of 3 participants. Thus, you will be in a different group every period.

In each round, you must first decide whether to enter into a contest to compete against other

group members to win a prize. The value of the total prize depends on the number of group

members who choose to enter:

• If you choose not to enter into the contest, then you have no further decision to make in

this round.

• If you choose to enter into the contest, then you must pay an entry fee worth 10.5 points

and also decide how much resource to invest in the contest.

At the beginning of each round, each participant will receive an endowment of 300 points to

cover the entry fee and investment cost in the contest.

In the following, we will explain in detail the determination of the total prize and the contest

rule.

Total prize

The total prize will consist of two components:

1. The base prize: 120 points.

2. The total amount of entry fees collected from all contestants

Therefore, the total prize in each round = 120 + n*entry fee, where n is the number

of contestants in your group. For example, if two group members choose to enter in a round, the

total prize in that round is equal to 120 + 2*entry fee.
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Note: you will not be informed about how many group members choose to enter or about the

exact value of the total prize until the end of each round.

Prediction of the number of contestants

Whether or not you choose to enter in a round, you will be asked to predict the number of

contestants in your group (including yourself). If your prediction is correct, you will earn additional

10 points.

Investment cost

If you choose to enter, then you also need to decide how much resource to invest in the contest.

Your investment cost is equal to:

Investment cost = invested resource / productivity

where productivity can take any value from 1.00 to 2.00 (up to 2 decimal points). That

is, the higher your productivity, the lower your investment cost for a given amount of invested

resource. The computer will randomly and independently draw the productivity value for everyone

in your group. In every period everyone will have new draws.

Note: at the beginning of each period ,you will be informed of your productivity value. But

you will not know other group members’ productivity values.

Contest rule

If you choose to enter, your earnings from the contest are determined by the following conditions:

• Condition 1: whether any other group members choose to enter.

– Case 1: if no other group member chooses to enter, then no matter how much resource

you invest, you will automatically win the total prize, i.e., the base prize of 120 points

plus your returned entry fee. Your earnings in this round is: 300 - investment cost

+ 120.

– If at least one other group member chooses to enter, then we consider Condition 2.

• Condition 2: whether at least one contestant’s invested resource is greater than 30.5, i.e., the

minimum amount of investment.

– Case 2: if no contestant’s invested resource is greater than 30.5, then all contestants

(those who enter) share the total prize, i.e., sharing the base prize of 120 points

plus your returned entry fee. Your earnings in this round is: 300 - investment cost

+ 120/n, where n is the number of contestants (including yourself).

– If at least one contestant’s invested resource is greater than 30.5, then we consider

Condition 3.

• Condition 3: whether you invest the highest amount of resource.
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– Case 3: if you invest the highest amount of resource, then you will win the total prize

all by yourself, i.e., the base prize of 120 points plus all contestants’ entry fees

(including yours). Your earnings in this round is: 300 - investment cost + 120 +

n*entry fee - entry fee = 300 - investment cost + 120 + (n - 1)*entry fee, where n is the

number of contestants (including yourself).

– Case 4: if you invest the highest amount of resource but there are also other group

members investing the same amount, then all winners share the total prize, i.e., the

base prize of 120 points plus all contestants’ entry fees (including yours).

Your earnings in this round is: 300 - investment cost + (120 + n*entry fee)/m - entry

fee, where m is the number of contestants who invest the highest amount of resource

(including yourself), n ≥ m.

– Case 5: if your invested resource is not the highest, then you do not win the prize. Your

earnings in this round is: 300 - investment cost - entry fee.

Note: the situations where your entry fee will be returned include 1) only you

enter into the contest; 2) no contestant’s invested resource is greater than 30.5; 3)

your invested resource is the highest. In other words, only when someone else but not

you invests the highest amount of resource exceeding 30.5 will your entry fee not be

returned.

If you decide not to enter into in the contest, your earnings are equal to your endowment of 300

points.

Below we will demonstrate the payoff calculation through two examples.

Example 1

ID Productivity Enter Resource Investment Cost Win? Entry fee returned? Payoff calculation

1 1.50 No 0 0 Yes Yes 300-0+120/2=360

2 2.00 Yes 30 15 Yes Yes 300-15+120/2=345

3 1.00 No / / No / 300

Example 2

ID Productivity Enter Resource Investment Cost Win? Entry fee returned? Payoff calculation

1 1.50 Yes 150 100 No No 300-100-10.5=189.5

2 2.00 Yes 200 100 Yes Yes 300-100+120+(3-1)*10.5=341

3 1.00 Yes 20 20 No No 300-20-10.5=269.5

Feedback and final payoff

At the end of each period, you will be informed about the number of contestants, the highest

invested resource, and your period earnings. At the end of the experiment, five out of 20 periods
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will be drawn randomly to determine your earnings. The earnings you receive in these five periods

will be summed and converted into RMB.

Some common questions: What if my earnings are negative? They will be compensated with

your other gains. If at the end of the session your earnings are negative, you will receive 15 Yuan,

the participation payment. Are there any questions?

C.2 Instructions for Zero W

You are about to participate in an experiment. The instructions are the same for all participants.

Please read them carefully. No communication is allowed during the experiment. If you have any

question, please raise your hand and an experimenter will come to help you.

You have received 15 Yuan for showing up on time. You may earn more money by making

decisions in the experiment. The points you may earn depends on your decision and on other

participants’ decisions. At the end of the experiment, all points you earn will be converted to RMB

at the rate of 25 points for 1 RMB. Both your identity and your decisions are strictly anonymous

throughout the experiment.

Overview

This experiment consists of 20 periods. At the beginning of each period, you will be randomly

matched into a group of 3 participants. Thus, you will be in a different group every period.

In each round, you must first decide whether to enter into a contest to compete against other

group members to win a prize.

• If you choose not to enter into the contest, then you have no further decision to make in

this round.

• If you choose to enter into the contest, then you must also decide how much resource to

invest in the contest.

At the beginning of each round, each participant will receive an endowment of 300 points to

cover the investment cost in the contest.

In the following, we will explain in detail the determination of the total prize and the contest

rule.

Total prize

The total prize will be 120 points.

Note: you will not be informed about how many group members choose to enter until the end

of each round.

Prediction of the number of contestants

Whether or not you choose to enter in a round, you will be asked to predict the number of
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contestants in your group (including yourself). If your prediction is correct, you will earn additional

10 points.

Investment cost

If you choose to enter, then you also need to decide how much resource to invest in the contest.

Your investment cost is equal to:

Investment cost = invested resource / productivity

where productivity can take any value from 1.00 to 2.00 (up to 2 decimal points). That

is, the higher your productivity, the lower your investment cost for a given amount of invested

resource. The computer will randomly and independently draw the productivity value for everyone

in your group. In every period everyone will have new draws.

Note: at the beginning of each period, you will be informed of your productivity value. But

you will not know other group members’ productivity values.

Contest rule

If you choose to enter, your earnings from the contest are determined by the following conditions:

• Condition 1: whether at least one contestant’s invested resource is greater than 36.5, i.e., the

minimum amount of investment.

– Case 1: if no contestant’s invested resource is greater than 36.5, then no one will obtain

any prize. Your earnings in this round is: 300 - investment cost.

– If at least one contestant’s invested resource is greater than 36.5, then we consider

Condition 2.

• Condition 2: whether you invest the highest amount of resource.

– Case 2: if you invest the highest amount of resource, then you will win the total prize

all by yourself. Your earnings in this round is: 300 - investment cost + 120.

– Case 3: if you invest the highest amount of resource but there are also other group mem-

bers investing the same amount, then all winners share the total prize. Your earnings

in this round is: 300 - investment cost + 120/m, where m is the number of contestants

who invest the highest amount of resource (including yourself).

– Case 4: if your invested resource is not the highest, then you do not win the prize. Your

earnings in this round is: 300 - investment cost.

If you decide not to enter into in the contest, your earnings are equal to your endowment of 300

points.

Below we will demonstrate the payoff calculation through two examples.

Example 1
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ID Productivity Enter Resource Investment Cost Win? Payoff calculation

1 1.50 No 0 0 No 300-0=300

2 2.00 Yes 30 15 No 300-15=285

3 1.00 No / / No 300

Example 2

ID Productivity Enter Resource Investment Cost Win? Payoff calculation

1 1.50 Yes 150 100 No 300-100=200

2 2.00 Yes 200 100 Yes 300-100+120=320

3 1.00 Yes 20 20 No 300-20=280

Feedback and final payoff

At the end of each period, you will be informed about the number of contestants, the highest

invested resource, and your period earnings. At the end of the experiment, five out of 20 periods

will be drawn randomly to determine your earnings. The earnings you receive in these five periods

will be summed and converted into RMB.

Some common questions: What if my earnings are negative? They will be compensated with

your other gains. If at the end of the session your earnings are negative, you will receive 15 Yuan,

the participation payment. Are there any questions?

C.3 Instructions for Zero T

You are about to participate in an experiment. The instructions are the same for all participants.

Please read them carefully. No communication is allowed during the experiment. If you have any

question, please raise your hand and an experimenter will come to help you.

You have received 15 Yuan for showing up on time. You may earn more money by making

decisions in the experiment. The points you may earn depends on your decision and on other

participants’ decisions. At the end of the experiment, all points you earn will be converted to RMB

at the rate of 25 points for 1 RMB. Both your identity and your decisions are strictly anonymous

throughout the experiment.

Overview

This experiment consists of 20 periods. At the beginning of each period, you will be randomly

matched into a group of 3 participants. Thus, you will be in a different group every period.

In each round, you must first decide whether to enter into a contest to compete against other

group members to win a prize.

• If you choose not to enter into the contest, then you have no further decision to make in

this round.
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• If you choose to enter into the contest, then you must also decide how much resource to

invest in the contest.

At the beginning of each round, each participant will receive an endowment of 300 points to

cover the investment cost in the contest.

In the following, we will explain in detail the determination of the total prize and the contest

rule.

Total prize

The total prize will be 120 points.

Note: you will not be informed about how many group members choose to enter until the end

of each round.

Prediction of the number of contestants

Whether or not you choose to enter in a round, you will be asked to predict the number of

contestants in your group (including yourself). If your prediction is correct, you will earn additional

10 points.

Investment cost

If you choose to enter, then you also need to decide how much resource to invest in the contest.

Your investment cost is equal to:

Investment cost = invested resource / productivity

where productivity can take any value from 1.00 to 2.00 (up to 2 decimal points). That

is, the higher your productivity, the lower your investment cost for a given amount of invested

resource. The computer will randomly and independently draw the productivity value for everyone

in your group. In every period everyone will have new draws.

Note: at the beginning of each period, you will be informed of your productivity value. But

you will not know other group members’ productivity values.

Contest rule

If you choose to enter, your earnings from the contest are determined by the following conditions:

• Condition 1: whether any other group members choose to enter.

– Case 1: if no other group member chooses to enter, then no matter how much resource

you invest, you will automatically win the total prize. Your earnings in this round is:

300 - investment cost + 120.

– If at least one other group member chooses to enter, then we consider Condition 2.

• Condition 2: whether you invest the highest amount of resource.
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– Case 2: if you invest the highest amount of resource, then you will win the total prize

all by yourself. Your earnings in this round is: 300 - investment cost + 120.

– Case 3: if you invest the highest amount of resource but there are also other group mem-

bers investing the same amount, then all winners share the total prize. Your earnings

in this round is: 300 - investment cost + 120/m, where m is the number of contestants

who invest the highest amount of resource (including yourself).

– Case 4: if your invested resource is not the highest, then you do not win the prize. Your

earnings in this round is: 300 - investment cost.

If you decide not to enter into in the contest, your earnings are equal to your endowment of 300

points.

Below we will demonstrate the payoff calculation through two examples.

Example 1

ID Productivity Enter Resource Investment Cost Win? Payoff calculation

1 1.50 No 0 0 No 300-0=300

2 2.00 Yes 30 15 Yes 300-15+120=405

3 1.00 No / / No 300

Example 2

ID Productivity Enter Resource Investment Cost Win? Payoff calculation

1 1.50 Yes 150 100 No 300-100=200

2 2.00 Yes 200 100 Yes 300-100+120=320

3 1.00 Yes 20 20 No 300-20=280

Feedback and final payoff

At the end of each period, you will be informed about the number of contestants, the highest

invested resource, and your period earnings. At the end of the experiment, five out of 20 periods

will be drawn randomly to determine your earnings. The earnings you receive in these five periods

will be summed and converted into RMB.

Some common questions: What if my earnings are negative? They will be compensated with

your other gains. If at the end of the session your earnings are negative, you will receive 15 Yuan,

the participation payment. Are there any questions?
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