
Born to wait?

A study on allocation rules in booking systems

December 17, 2024

Abstract

Queue-based rules for allocating scarce goods are widely utilized in booking systems due to their

perceived efficiency. However, empirical investigations into the externalities and opportunity costs of

queuing in multitasking scenarios are limited. This paper reports on two laboratory experiments that

compare a queue-based rule with a lottery-based rule by quantifying their respective efficiency losses.

Our findings indicate that while the queue-based rule demonstrates superior allocative efficiency, it in-

curs significant losses in productive efficiency attributed to opportunity costs of time. In contrast, the

lottery-based rule exhibits improved overall efficiency with minimal time spent on the booking system.

Additionally, under the queue-based rule, participants display bimodal behavior, either engaging fully or

abstaining from the booking system, influenced by their time valuations. Further, while providing queue

length information facilitates more efficient coordination, it also leads to more frequent task-switching

behavior that negates any productive efficiency gain from improved coordination. This research under-

scores the crucial need to reevaluate allocation mechanisms in booking systems, taking into account their

externalities.
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The first parent lined up at 4 a.m. on a Sunday, when the only other people around were out just long enough to

stumble from warm taxis through sobering 19-degree air into their homes.

Twenty minutes later, other parents showed up and a line began to form down Atlantic Avenue in Brooklyn. One

father kept a list so that anyone searching for a thawing hot coffee could do so without losing a place in the line.

He abandoned that project as more and more people trickled in and the end of the line was no longer visible from

the front.

[...] It was too dark to read, so they chatted about things like schools or children, and they poked fun at one

another for being there. Every few minutes, someone would check his watch and express the hope that Carmelo

the Science Fellow would open his doors early for his annual summer camp registration.
— “Born to wait”, New York Times, February 22th, 2013

1 Introduction

Queue rules based on a first-come, first-served basis are commonly used to manage the allocation of scarce

resources. Extensive research has been conducted in various academic fields, including computer science,

operations research, and economics, to analyze the performance of queue rules. In some situations, people

put their names on a waiting list for goods that arrive over time (e.g., public housing, daycare spots, and de-

ceased donor organs), without spending time queuing. But in many other situations, people must physically

wait in line. For instance, the epigraph quoted from a New York Times article describes how New York

City parents wait in line for hours in advance at the entrance of the institute for science camp registration.

Similar situations arise when consumers line up in front of Apple Stores during the release of new iPhone

models or when shoppers wait for hours to gain entry into retail stores during Black Friday sales.

While previous studies have provided valuable insights into the optimal design of a queue rule that restricts

attention to an allocation problem,1 little attention has been paid to the externality of a queue rule on other

parallel activities in which people participate.2 In particular, the first-come, first-served rule may result in

individuals devoting significant time and effort to unproductive activities like queuing, thereby reducing the

time available for other productive activities. According to a New York Times article, Americans spend

1For instance, Platz and Østerdal (2017); Bloch and Cantala (2017); Che and Tercieux (2021); Schummer (2021); Leshno
(2022), among many others.

2The literature on transportation economics has emphasized the time lost due to traffic congestion as one of the largest exter-
nalities associated with the use of automobiles (see Naor (1969); Parry, Walls and Harrington (2007); Heller et al. (2019), among
others). But, as far as we know, such externalities due to time lost have not attracted enough attention in other literature.

1



approximately 37 billion hours annually waiting in line, highlighting the magnitude of this issue.3 A survey

conducted in 2014 indicated that U.S. businesses lose around $130 billion in employee productivity every

year ($900 per employee) due to the time wasted on service inefficiencies during working hours; 40% of

surveyees reported spending at least one hour waiting in line or on a telephone queue to resolve service-

related issues.4

In this paper, we study a multi-tasking situation in which people can obtain scarce goods (e.g., time slots,

event tickets) via a booking system while also having the chance to spend time on a productive activity.

An example is the science camp registration quoted above where parents could have spent the queuing time

on other productive work. We investigate the extent of externalities generated by different allocation rules

within the booking system on the parallel productive activity. In particular, we compare a queue rule with

an alternative rule based on lottery. A queue rule could potentially enhance allocative efficiency since the

queuing time could signal people’s valuation. We, however, highlight the time cost incurred by queuing.

Since the time people spend queuing could have been utilized for the parallel productive activity, the queue

rule could lead to lower productive efficiency. On the other hand, a lottery rule eliminates the necessity of

competition via spending time on the booking system, although it could hamper allocative efficiency.5

Learning about individuals’ opportunity costs of time is critical to quantifying the aforementioned two types

of efficiency, that is, allocative efficiency in the booking system and productive efficiency in the productive

activity. First, to quantify the productive efficiency, we must compute individuals’ forgone payoffs from

the productive activity due to the time they spend on the booking system. Second, individuals’ opportunity

costs of time also affect the time they spend in a booking queue, which complicates the determination of

allocative efficiency. As Holt and Sherman (1982) and the follow-up literature have theoretically shown,6

if individuals’ opportunity costs of time are heterogeneous, the queue rule does not necessarily produce a

more efficient allocation of goods than a random allocation.7 Using field data to quantify these types of

3“Why Waiting is Torture,” New York Times, August 18th, 2012.
4See https://www.huffpost.com/entry/waiting-in-line-is-bad-bu_b_12523316; last accessed on May 26, 2022.
5Lottery is widely used in market design environments, including public school choices (Abdulkadiroğlu and Sönmez, 2003),

on-campus housing placements (Chen and Sönmez, 2002), allocation of vehicle licenses (Li, 2018), and allocation of nonimmigrant
work permits in the U.S. (Pathak, Rees-Jones and Sönmez, 2022). The market design literature advocates lottery for fairness, while
we highlight its advantage in saving people’s time costs.

6The economics of rationing and queuing has been studied by Tobin (1952); Nichols, Smolensky and Tideman (1971); Barzel
(1974); Holt and Sherman (1982); Suen (1989); Taylor, Tsui and Zhu (2003), among others.

7In theory, a participant’s queuing time is a function of her valuation of goods and her opportunity cost of time. If a participant
with a high valuation also has a high opportunity cost of time, she may actually spend less time queuing compared to a participant
with a low valuation and a low opportunity cost of time.
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efficiency is challenging given the difficulty in obtaining individual-level data on opportunity costs of time.

Therefore, we introduce an experimental framework that allows for a tight control of individual opportunity

cost of time, enabling quantification of the different sources of efficiency.

To quantify and compare the different sources of efficiency losses under different allocation rules, we design

an experiment in a dual-tasking environment in which each participant faces two simultaneous tasks in four

minutes: an appointment booking task and a production task. In the booking task, each participant needs to

book one slot, for which their valuation is private and randomly generated. Participants compete for these

slots by queueing or entering a lottery, depending on the treatments. The slots are allocated at the end of

the fourth minute. In the production task, participants earn a flat payoff for every second spent on the task

screen, which is also generated privately and independently for each participant. This payoff reflects the

opportunity cost of the time spent on the booking task. Participants can freely switch between the two tasks

at any time, but cannot work on both simultaneously. So, they face a time allocation problem between the

two tasks.

Using a between-subjects design, we compare two booking rules: the queue rule and the lottery rule. Under

the lottery rule, when participants visit the booking system, they can apply to enter a lottery by pressing a

button on the screen at any time in a round, and slots are randomly allocated to applicants at the end of the

round. Under the queue rule, participants can enter the queue in the booking system at any time in a round

and remain in the queue. But if a participant switches to the production task and later returns to the booking

system, she must go to the back of the queue. Slots are allocated according to participants’ ranks in the

queue at the end of the round.

Under the queue rule, we further vary whether participants can observe the current queue length and their

ranks upon entering the queue. In some real-life queues, participants can see where they are and use that

information to infer their winning probabilities. In other queuing situations, participants may be uncertain

about their winning probabilities, especially when queues are long or when the supply of goods is uncertain.

Therefore, we design two treatments in which queuing participants either have precise knowledge of their

ranks in queues or have no such information at all. We want to investigate whether providing such ranking

information can help improve the overall efficiency of queuing systems. For example, those who realize

they have entered the queue too late to secure a slot might choose to leave before the round ends, potentially
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reducing productive inefficiency.

We distinguish between two sources of efficiency loss in our theoretical framework: the inefficient allocation

of booking slots (allocative efficiency loss) and the total of participants’ opportunity cost of time spent on

the booking task (productive efficiency loss). Consistent with our theoretical predictions, our experimental

results show that queue participants spend substantial amounts of time on the booking task while lottery

participants spend only a few seconds submitting their lottery entry and the remainder of their time on the

production task. Although allocative efficiency is higher under the queue rule, the productive efficiency loss

associated with this rule far exceeds the allocative efficiency improvement, resulting in significantly lower

overall efficiency compared to the lottery rule. Additionally, we observe bimodal behavior under the queue

rule, which is significantly correlated with participants’ time valuations: those with high time valuations

(i.e., the ratio of monetary slot valuation and opportunity cost of time) tend to spend nearly all of their time

queuing, while those with low time valuations tend to spend little to no time queuing. Moreover, we find

that providing ranking information to queuing participants does not influence their overall queuing time.

Although observable queues promote more efficient coordination, they simultaneously lead to much more

frequent task-switching. Consequently, productive efficiency loss attributable to these switches negates any

efficiency gain through improved coordination. Furthermore, while most switches can be considered rational

when queues are too short or too long, a small fraction of plausibly irrational switching behavior (around

10%) has a disproportionate impact on productive efficiency loss (around 40%).

We examine the robustness of our main findings in alternative settings. The experimental manipulation is

summarized in Section 5. We find that regardless of the degree of market competitiveness, the nature of the

task (abstract vs. real-effort), the complexity of the booking system (single vs. two-stage; solo vs. dual-

track), queuing consistently induces lower overall efficiency compared to lottery. At the individual level,

similar bimodal behavior is also observed across these settings, although it is not significantly associated

with participants’ time valuations. This lack of association is likely due to the endogenous nature of produc-

tivity in the real effort task, which makes it difficult for participants to accurately evaluate their opportunity

cost of time.

Our paper is positioned within the broad experimental literature on matching markets (see Roth (2021) and

Hakimov and Kübler (2021) for recent surveys). However, we differ from this literature in our introduc-
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tion of a new experimental framework for evaluating various forms of efficiency loss that arise during the

matching process. In a related study, Hakimov et al. (2021) observe scalping in booking systems based on

first-come, first-served rules, and propose a lottery-based batch system that periodically collects applications

and then draws lotteries to allocate slots. This system eliminates the importance of speed in the allocation

process and thus deters scalpers from entering the market. Our paper could complement their study by

demonstrating another advantage of lottery-based booking systems, that is, eliminating the efficiency loss

due to the opportunity cost of time spent queuing in (offline) booking systems.

Our multitasking experimental environment parallels previous studies in which agents can choose between

work tasks and leisure activities. The leisure utility is represented by either an abstract flat wage (Li, Lar-

iviere and Bassamboo, 2024; Beer, Qi and Ríos, 2024; Dutcher, Salmon and Saral, 2024), similar to our

experiment, or a tangible activity such as Internet browsing (Corgnet, Hernán-González and Schniter, 2015;

Corgnet, Gómez-Minambres and Hernán-González, 2015; Corgnet and Hernán-González, 2019). However,

these studies address different sets of research questions, including inter-team dynamics and principal-agent

incentive problems. In contrast, the purpose of our research is to quantify efficiency losses arising from

externalities in various allocation systems.

Our study also contributes to the burgeoning literature on behavioral queues, specifically the behavioral im-

pacts of queuing systems on the individual behaviors of both customers and service workers. For example,

Allon and Hanany (2012) theoretically investigates how social norms and community enforcement can ra-

tionalize the phenomenon of cutting in line and the rejection of such intrusions. Buell (2021) demonstrates

that last-place aversion can lead to inefficient switching and abandonment behavior. Shunko, Niederhoff

and Rosokha (2018) identifies that both parallel queues and queue-length visibility exert behavioral impacts

on service worker productivity. Estrada Rodriguez, Ibrahim and Zhan (2024) finds that lying aversion may

limit customers’ attempts to reduce their waiting times through misreporting their private information in un-

observable queues. Wang and Zhou (2018) finds in a natural field experiment that shared queues, as opposed

to dedicated queues, slow down service times due to the social loafing effect. In contrast, our experiment

demonstrates that customers exhibit bimodal behavior in queues and are more likely to do so in unobservable

queues, as opposed to observable ones.

Finally, it is important to note that there are two types of allocation systems also called queues in real life but
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different from the one we study. One type is a queue system where a facility continuously provides services

to people who arrive over time in which situation an important reason for people to arrive earlier is to be

served earlier.8 For instance, at airports, passengers are checked in based on the order of their arrival. In our

queue system, slots on booking systems are released at a predetermined time, so an earlier arrival does not

result in an earlier assignment. The other type is a waiting list, where people enter their names on a list but

do not physically queue. In this situation, there is no opportunity cost of time as we study, but there may be

other types of waiting costs for individuals who are delay sensitive.9

The rest of the paper is organized as follows. Section 2 presents the theoretical framework. Section 3 de-

scribes the experimental design and outline hypotheses. Section 4 reports our experimental results. Section

5 summarizes main findings of the robustness experiment. Section 6 provides concluding remarks.

2 Theoretical Framework

This section presents the theoretical framework that guides our experimental design. In our model, n par-

ticipants face a time allocation problem between the booking and a production task. There are m identical

slots in the booking task, and n > m ≥ 1. Denote the set of participants by I = {1,2, . . . ,n} and denote the

set of slots by S = {s1,s2, . . . ,sm}. Each participant i demands one slot and values each slot at vi ∈ R+.

Each vi is independently drawn from a commonly known uniform distribution on an interval [v,v] ⊂ R+.

Each i knows her valuation vi but does not know the other participants’ valuations except for the underlying

distribution. Each i also has constant productivity denoted by wi ∈ R+ on the production task, which means

that i will obtain a payoff wi by spending one unit of time on the production task. Each wi is independently

drawn from a commonly known uniform distribution on an interval [w,w]⊂ R+, and it is also independent

of vi. Each i knows her productivity wi but does not know the other participants’ productivity except for the

underlying distribution. We call yi = vi/wi the time valuation of slots for participant i, which is the valuation

of slots measured in time units. So, yi is distributed on [y,y], where y = v/w and y = v/w. Let F denote

the cumulative distribution function of yi, which is not a uniform distribution. As will be shown shortly,

8Numerous studies in economics and management science have been devoted to this type of queue (e.g., Naor, 1969; Platz and
Østerdal, 2017; Che and Tercieux, 2021).

9Some papers have studied the trade-off between quick matching to cut down waiting costs and slow matching to generate higher
match surplus (e.g., Akbarpour, Li and Gharan (2020); Baccara, Lee and Yariv (2020); Schummer (2021); Leshno (2022)). Other
papers take agents’ waiting time as endogenous choices and design mechanisms to encourage truthful reports (e.g., Schummer and
Abizada (2017); Dimakopoulos and Heller (2019)).
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in equilibrium, participants’ strategies are determined by their time valuation of slots. We assume that all

participants are risk-neutral. Each participant has T ∈ R+ units of time to allocate between the two tasks.

In the booking task, slots are assigned using either the queue rule or the lottery rule. Under the lottery rule,

participants do not need to spend time on the booking task. They only need to show up once in the booking

task to become an applicant and the rule assigns slots to applicants uniformly at random. If applicants

are no more than the number of slots, every applicant is assigned a slot. Therefore, under the lottery rule,

participants can spend all of their time on the production task.

In contrast, under the queue rule, slots are assigned to participants based on their queuing time in a line

at the end of the game. If there are more participants in the queue than the number of slots, only the first

m participants in the queue are assigned a slot. Otherwise, every participant in the queue is assigned a

slot. Participants face a time allocation problem between queuing for the booking task and engaging in the

production task.

To understand how participants allocate their time between the two tasks under the queue rule, following the

literature (e.g., Holt and Sherman, 1982; Suen, 1989; Taylor, Tsui and Zhu, 2003), we model the queuing

game as an all-pay auction in which participants compete for slots by bidding their amount of queuing time.

The symmetric Bayesian Nash equilibrium is characterized by an increasing function t(y), which determines

a participant’s queuing time when her time valuation is y. It is worth emphasizing that the queuing auction

we study here differs from the standard auction in which participants’ bidding strategies are determined

by their valuation of slots. Here, because participants may have heterogeneous productivity, a participant

with a high valuation of slots and an even higher productivity may spend less time queuing than another

participant with a low valuation of slots and an even lower productivity. In our analysis, the bid cap T is

ignored because our experimental parameters are carefully chosen to ensure that the cap is never binding.

Formally, let H denote the cumulative distribution function of the m-th order statistics among n− 1 inde-

pendent draws from the time valuation distribution, F . Then, H(yi) is the probability for any participant

i with time valuation yi to win a slot in equilibrium. Proposition 1 derives the symmetric Bayesian Nash

equilibrium. The proof is provided in Online Appendix A.

Proposition 1. Under the queue rule in the booking task, in the symmetric Bayesian Nash equilibrium, every
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participant with time valuation yi spends t(yi) units of time in the queue, where t(yi) = yiH(yi)−
∫ yi

y H(s)ds.

The above analysis assumes that all players queue until slots are allocated. However, some real-life sit-

uations correspond to an alternative queue rule in which participants arriving too late to secure a slot are

informed of this when they arrive, thus avoiding unnecessary waiting. Although this alternative queue rule

would appear to conserve participants’ queuing time, Holt and Sherman (1982) have shown that modeling

it as a winner-pay auction results in an equilibrium effect that encourages participants to arrive earlier. As

a consequence, the equilibrium expected queuing time for each participant remains unchanged.10 This ob-

servation is reminiscent of the revenue equivalence theorem in the standard auction theory (Myerson, 1981;

Riley and Samuelson, 1981). Therefore, using either setup of the queue rule does not change our comparison

between the two allocation rules in theory.

An immediate corollary to Proposition 1 is that participants spend more time queuing when they have higher

time valuations.

Corollary 1. Under the queue rule in the booking task, participants with higher time valuations spend more

time queuing.

Next, we utilize the equilibrium outcome to compare the efficiency under the two allocation rules. Let a

function µ : S → I∪{0} denote an allocation of slots where for every slot s ∈ S, µ(s) denotes the participant

who obtains s, and if µ(s) = 0, it means that s is unassigned. Let µ denote the allocation of slots and

let ti ∈ [0,T ] denote the units of time that every participant i spends on the booking task in the allocation

process. We identify two types of potential efficiency loss for each rule. The first type is the efficiency

loss in the (mis)allocation of slots, which we call allocative efficiency loss. In the most efficient allocation,

slots should be allocated to those who value them the most. Given participants’ valuations of slots, let v(ℓ)

denote the ℓ-th highest valuation among the n participants. Then, taking the most efficient allocation as the

benchmark, we define the (expected) allocative efficiency loss of the rule as follows:

Allocative efficiency loss = ∑
m
ℓ=1E[v(ℓ)]−∑

m
ℓ=1E[vµ(sℓ)].

11

10Specifically, under the alternative queue rule, every participant with time valuation yi will bid the amount of queuing time

t ′(yi) = yi −
∫ yi

y H(s)ds
H(yi)

. Because such a participant has a probability H(yi) of winning a slot in the equilibrium, his expected queuing
time is H(yi)t ′(yi), which equals t(yi) in Proposition 1.

11If a slot is unassigned, we let v0 = 0.
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The second type is the efficiency loss stemming from the opportunity costs associated with participants not

working on the production task but on the booking task, which we call productive efficiency loss:

Productive efficiency loss = ∑
n
i=1E[tiwi].

In our theoretical framework, participants’ valuations of slots are positively correlated with their time val-

uations, though they are not fully aligned. Consequently, our analysis predicts that both types of efficiency

loss will be positive under the queue rule, while only the allocative efficiency loss will be positive under the

lottery rule. Additionally, the allocative efficiency loss under the queue rule is expected to be smaller than

that under the lottery rule. When considering both types of efficiency loss, the overall efficiency of each rule

will depend on the specific parameters of our model. We will provide more precise predictions following a

presentation of our experimental design and parameters.

3 Design of Experiment 1

Motivated by our theoretical framework, we implement a dual-tasking experimental environment. Partici-

pants are randomly matched into groups of five for each round of the experiment. Each session consists of

eight rounds, with each round lasting four minutes. After each round, participants are randomly rematched

to simulate a one-shot setting. In each round, a participant engages in two tasks displayed on separate

screens: an appointment booking task and an abstract-effort production task designed to impose an exoge-

nous opportunity cost of queuing. At the beginning of each round, each participant chooses which task to

display first. During each round, participants can freely switch between the two tasks at any time and as

often as they wish.

In the booking task, three slots are available for each group of five participants, with each participant allowed

to acquire at most one slot per round. At the beginning of each round, participants are privately informed

of their valuation for a slot, drawn independently from a uniform distribution ranging from 400 to 600

Experimental Currency Units (ECUs). During the round, participants compete for slots either by queuing or

entering a lottery, depending on their treatment condition. All slots are allocated at the end of a round, and

any unassigned slots are wasted.

In the production task, participants receive a flat payoff for every second they spend on the task screen.
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The payoff per second for every participant is privately and independently drawn from 1.50 to 2.50 ECUs

(accurate to two decimal places).12 To mitigate the potential psychological costs of idleness, we also offer

participants the option to engage in an unpaid simple counting task. We choose this abstract setting rather

than a real-effort production environment since it allows for tighter control over participants’ productivity,

thereby facilitating a cleaner test of the theoretical predictions.

3.1 The booking task

In the booking task, slots are assigned using either the queue rule or the lottery rule. Under the queue

rule, participants can enter the booking system at any time each round and immediately begin queuing by

pressing a button on the screen. Those who enter the booking task earlier occupy a higher position in the

queue. However, if a participant switches to the production task and later returns to the booking system, she

must go to the back of the queue.

The lottery rule collects participants’ applications and assigns slots randomly to applicants at the end of each

round. Participants can enter the booking system at any time during the round and apply for entry into the

lottery by pressing a button on the screen. All applications are gathered into a virtual urn. When the round

ends, applications are randomly drawn from the urn one by one until all available slots have been allocated.

3.2 Treatments

We implement three treatments in Experiment 1: one for the lottery rule, Lottery5, and two for the queue

rule, Queue5 and Queue5_rank. In the two queue treatments, we manipulate participants’ awareness of

the queue length and their ranking positions upon entering the queue. In Queue5, participants receive no

feedback about their position in the queue, while in Queue5_rank, they are informed of their ranking position

and the queue length. As discussed in the introduction, the primary reason for studying the observable queue

treatment is the intuition that it may enable participants to make more efficient queuing decisions. However,

recall that the theoretical model predicts that an observable queue should have no impact on productive

efficiency under the queue rule. Table 1 summarizes the main features of our experimental design.

12If participants dedicate the entire four minutes of each round to the production task, their payoffs will range from 360 to 600
ECUs, comparable to the valuation of a slot.
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Table 1: Design of Experiment 1

Treatments Allocation rule Ranking info # of participants # of sessions
Queue5 Queue No 60 6
Queue5_rank Queue Yes 60 6
Lottery5 Lottery N/A 60 6

3.3 Procedure

The experiment was conducted at the Nanjing Audit University Economics Experimental Lab with a total

of 180 university students, using the software z-Tree (Fischbacher, 2007). Each session has 10 participants

who are randomly re-matched in each round. After every round, all participants receive feedback about

whether they were allocated a slot and their payoffs from the booking and production tasks. At the end of

a session, one round is privately and randomly chosen for each participant and the participant receives her

payoff from that round.

During the experiment, as participants arrived, they were randomly seated at a partitioned computer terminal.

The experimental instructions were given to participants in printed form and were also read aloud by the

experimenter. Participants then completed a comprehension quiz before proceeding. At the end of the

experiment, they completed a questionnaire concerning their demographics and a number of psychological

measures. For every 10 ECUs, participants earned 1 RMB. A typical session lasted about one hour with

average earnings of 67.1 RMB, including a show-up fee of 15 RMB. All instructions for Experiment 1 are

provided in Online Appendix C.

3.4 Hypotheses

Here, we apply the theoretical analysis from Section 2 using our experimental parameters to derive a set of

testable hypotheses regarding participants’ strategies and efficiency outcomes across the different treatments.

It is clear that in the lottery treatment, participants do not need to spend time on the booking task except

for submitting their application to enter the lottery. Therefore, we expect that participants will minimize

the time spent on the booking task: they will likely visit the booking task only once and stay for just a few

seconds to submit their application. All slots will be assigned randomly at the end of the round.

In contrast, in the queue treatments, participants need to compete for slots by queuing. In our experiments,
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five participants are competing for three booking slots, so n = 5 and m = 3. The slot valuation v follows the

uniform distribution on [400,600], while the productivity w (per minute) follows the uniform distribution on

[90,150].13 The expected efficiency losses and expected queuing time under the two rules are summarized

in Table 2.

Table 2: Comparisons of efficiency and time spent in the booking system under the queue and lottery rules

Queue Lottery
Allocative efficiency loss ≈ 35 ECU 100 ECU
Productive efficiency loss ≈ 1267 ECU 0 ECU
Time spent on booking task ≈ 139 seconds per subject ≈ 0 second

(≈ 57.8% of 4 minutes)

While the queue rule is anticipated to incur a smaller allocative efficiency loss compared to the lottery rule,

its productive efficiency loss is expected to be significantly greater. Overall, the lottery rule outperforms the

queue rule in terms of overall efficiency under our experimental parameters.

Now we formally state our hypotheses as follows. Our first hypothesis is about the overall time spent on the

booking system.

Hypothesis 1. (Lottery vs. Queue on Time Spent on Booking) Participants spend more time on the booking

system in Queue5 and Queue5_rank than in Lottery5. i.e., ∀ yi, tlottery < tqueue(yi) = trank(yi)

Our next hypothesis is about the probability of obtaining a slot under the two rules.

Hypothesis 2. In Lottery5, every participant have an equal chance of winning a slot. In Queue5 and

Queue5_rank, participants with higher time valuations spend more time queuing and consequently have a

greater chance of winning a slot.

Moreover, the calculations regarding the productive and allocative efficiency losses under each rule imme-

diately lead to the following hypothesis:

Hypothesis 3. (Lottery vs. Queue on Efficiency) (a) Productive efficiency loss is higher in Queue5 and

Queue5_rank than in Lottery5. (b) Allocative efficiency loss is higher in Lottery5 than in Queue5 and

Queue5_rank.

13We omit the detail that both parameters are discrete integers in our experiment.
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It is worth noting that participants in our experiment are allowed to freely switch back and forth between

the two task screens. While our theoretical framework is based on a sealed-bid all-pay auction that does not

explicitly account for their switching behavior, it should be clear that in the Queue5 treatment, where the

queue length is unobservable, a rational participant should enter the queue at some time t ∈ [0,T ] and remain

there thereafter. Therefore, to characterize a participant’s strategy in Queue5, it suffices to focus on their

length of queuing time, as detailed in Proposition 1. For the Queue5_rank treatment, as mentioned in Section

2, the theoretical literature typically models this queue rule as a sealed-bid winner-pay auction in which

losers do not incur costs for their bids. The intuition is that losers are latecomers to the queue who would

drop out immediately after finding out they have no chance of winning, effectively not paying for their bids.

We apply this winner-pay auction framework to provide a theoretical prediction for participants’ queuing

length in the Queue5_rank treatment. As discussed in Section 2, given their time valuations, participants’

expected queuing time and overall efficiency are not affected by the availability of the ranking information

regarding the queue.14

Hypothesis 4. (Effect of Ranking Information) Queue5 and Queue5_rank do not differ in terms of (a)

participants’ expected queuing time and (b) each type of efficiency loss.

4 Results of Experiment 1

We first present aggregated and individual level results to test Hypotheses 1, 2 and 4(a), and then quantify

and compare the different sources of efficiency loss across treatments to test Hypotheses 3 and 4(b).

4.1 Treatment Effect on Time Spent on Booking

We first examine how participants allocate their time between the booking and production tasks. We find

strong support for Hypothesis 1. As shown in Figure 1, participants in the Queue5 treatment spend approx-

imately 50% of their time queuing, which is slightly lower than the predicted level (p = 0.063, Wilcoxon

signed-rank test).15 Further, ranking information appears to have little impact on the average queuing time

14Intuitively, when the queue length is observable, participants may adopt more complex strategies and exhibit increased switch-
ing behavior. For example, a participant who arrives and finds themselves alone in the queue might perceive it as beneficial to switch
to the production task for a short period before returning to the queue. However, characterizing participants’ equilibrium strategies
in such a dynamic setting is challenging and beyond the scope of this paper. Therefore, we will mainly explore experimental data
to investigate such behavior.

15Unless otherwise stated, we treat each session as a unit of observation in all reported statistics.
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(p = 0.818, Wilcoxon rank-sum test), supporting Hypothesis 4(a). In contrast, participants in the lottery

treatment spend only a few seconds on the booking task. This evidence strongly suggests that, compared to

the lottery rule, the queue rule leads to a substantial productive efficiency loss in terms of the opportunity

cost of time.16

Result 1. Participants spend significantly more time on the booking system in the queue treatments than in

the lottery treatment.

Figure 1: Percentage of time spent on the booking system

Notes: Error bars represent one standard error of means clustered at the session level.

Next, we find strong support for Hypothesis 2. Figure 2 illustrates a positive relationship between time

valuation and total queuing time in both queue treatments. The solid line represents the Lowess smoothing

curve, while the dashed line indicates the predicted proportion of timing spent in the queue. Each scatter

data point represents the percentage of time spent queuing by participants with varying time valuations.

In Queue5, the observed relationship shows a similar monotonic pattern to the theoretically predicted one.

However, participants with low time valuations tend to overspend time queuing, whereas those with high

time valuations tend to underspend. In Queue5_rank, the positive relationship persists but appears weaker.

To further quantify the relationship between time valuation and queuing time, we conduct random effects

16Figure B1 in Online Appendix B shows the time allocation behavior over rounds, indicating that the overall pattern is generally
stable over time.

14



Figure 2: Relationship between time valuation and percentage of queuing time

Notes: The observed relationship between time valuation and percentage of queuing time is produced using lowess smoothing.

regressions where the dependent variable is the percentage of time spent in the booking system for each

treatment, and the independent variables include time valuation, slot valuation and time cost per minute.

Table 3 reports the estimates from these regressions. We find statistical evidence supporting a positive

relationship between time valuation and queuing time in both queue treatments. Notably, the estimated

coefficient for time valuation is significantly higher in Queue5 compared to Queue5_rank (p < 0.001).17

In contrast, there is no significant relationship in the lottery treatment. Additionally, both a higher slot

valuation and a lower time cost are associated with increased queuing time, indicating that these two factors

influencing time valuation significantly contribute to the observed results.

Furthermore, we conduct random effects probit regressions, changing the dependent variable to an indicator

variable of winning a slot. Table 4 reports the average marginal effect estimates, indicating that increased

queuing time effectively translates to a higher likelihood of obtaining a slot, with this effect being sig-

nificantly larger in Queue5 (p < 0.001). Additionally, in the lottery treatment, the assignment of slots is

uncorrelated with time valuations, suggesting that it is effectively random.

17The p-value is produced by estimating a specification with an interaction term between time valuation and a treatment indicator.
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Result 2. A higher time valuation is associated with more time spent queuing, which in turn increases

the likelihood of obtaining a slot. Furthermore, this effect is more pronounced in the treatment with an

unobservable queue.

Table 3: Random effects regressions on time spent in booking

Queue5 Queue5_rank Lottery5
Time valuation 28.903*** 11.306*** -0.018

(2.073) (1.095) (0.059)
Slot valuation 25.710*** 13.272*** 0.064

(4.371) (1.095) (0.108)
Time cost per minute -107.687*** -35.230*** 0.299

(6.712) (7.113) (0.369)
Constant -73.616*** 49.969** 1.284 25.198* 1.416*** 0.658

(7.688) (23.668) (4.351) (13.484) (0.236) (0.812)

Clusters 6 6 6 6 6 6
N 480 480 480 480 480 480

Notes: Standard errors clustered at the session level are in parentheses. We rescale the slot valuation and time cost per minute by

dividing them by 100. The time valuation is the ratio of the slot valuation and the time cost per minute.

Table 4: Random effects probit regressions on the likelihood of obtaining a slot

Average marginal effects
Queue5 Queue5_rank Lottery5

Time valuation 0.279*** 0.112*** -0.025
(0.021) (0.017) (0.036)

Slot valuation 0.237*** 0.143*** -0.035
(0.031) (0.023) (0.042)

Time cost per minute -1.011*** -0.314*** 0.060
(0.079) (0.068) (0.169)

Clusters 6 6 6 6 6 6
N 480 480 480 480 480 480

Notes: Standard errors clustered at the session level are in parentheses. We rescale the slot valuation and time cost per minute by

dividing them by 100. The time valuation is the ratio of the slot valuation and the time cost per minute.

Though our results at the aggregate level are consistent with theoretical predictions, Figure 2 suggests a ten-

dency for bimodal behavior in the queue treatments, which contradicts the equilibrium behavior where there

is no mass at either extreme of never queuing or queuing all the time. To further validate this observation,

we plot the cumulative probability function (CDF) of total queuing time in Figure 3. We find a substantial

proportion of observations at the extremes (either fewer than 5 seconds or more than 235 seconds), with this

proportion being significantly higher in Queue5 compared to Queue5_rank (46.0% vs. 18.3%, p = 0.002,

Wilcoxon rank-sum test).18 Moreover, Table 5 reports estimates from random effects probit regressions,
18A similar bimodal behavior is also observed in an experimental all-pay auction with incomplete information about individual
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where the dependent variable is whether the participant spend almost no time queuing (columns 1 and 3) or

whether they spend almost all the time queuing (columns 2 and 4). As expected, participants with higher

time valuations are significantly more likely to spend nearly all their time queuing and less likely to drop

out altogether.

Figure 3: CDF of percentage of total queuing time

Table 5: Random effects probit regressions on the likelihood of never queuing or queuing all the time

Average marginal effects
Queue5 Queue5_rank

Always queue Never queue Always queue Never queue
Time valuation 0.204*** -0.252*** 0.042** -0.062**

(0.033) (0.038) (0.019) (0.026)

Clusters 6 6 6 6
N 480 480 480 480

Notes: Standard errors clustered at the session level are in parentheses. We rescale the slot valuation and time cost per minute by

dividing them by 100. The time valuation is the ratio of the slot valuation and the time cost per minute.

This finding is initially counterintuitive because, in the presence of an observable queue, we would expect

more successful coordination, meaning that precisely two participants in each group should spend very little

time queuing. They would switch to the booking task only to find that the queue length exceeds the number

of available slots, leading them to drop out of the queue immediately. However, in practice, participants’

actions are far from ideal, as switching back and forth incurs a non-negligible amount of unproductive

time. Conversely, in the case of an unobservable queue, participants base their decisions primarily on their

marginal costs of bidding (Müller and Schotter, 2010).
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Figure 4: CDF of percentage of effective queuing time

own time valuations, which likely leads to more bimodal behavior as a decision heuristic. To validate this

conjecture, we examine the frequency of switching in the two queue treatments. On average, participants

switch only once per round in Queue5, while they switch 21.4 times in Queue5_rank (p = 0.002, Wilcoxon

rank-sum test). It remains unclear a priori whether participants with high or low time valuations are more

likely to switch. On the one hand, those with high time valuations may switch early to find a short queue,

then return to the production task for a while before rejoining the queue. On the other hand, participants

with low time valuations might arrive at the queue too late; however, they do not simply drop out but instead

switch back and forth in search of a better opportunity. Table B1 in Online Appendix B reports estimates

from a random effects regression where the dependent variable is the participant’s switching frequency per

round in Queue5_rank. We find no significant association between time valuation and switching frequency.

Due to the non-negligible switching behavior, we compare the total queuing time with the “effective” queu-

ing time, defined as the amount of time participants spend queuing uninterruptedly until the end of a round.

We find that while the “ineffective” queuing time (calculated by subtracting the “effective” queuing time

from the total queuing time) is merely 2.9 seconds in Queue5, it increases significantly to 22.3 seconds in

Queue5_rank (p = 0.002, Wilcoxon rank-sum test).19 This suggests that 18% of productive efficiency loss

in Queue5_rank can be attributed to switching behavior. In Figure 4, we plot the CDF of effective queuing

19Figure B2 in Online Appendix B shows the percentage of effective and ineffective queuing time over rounds, indicating a
relatively stable pattern over time.
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time, revealing that 40% of participants in Queue5_rank spend no time queuing at all. This means that, on

average, two out of five participants in each group drop out of the queue once we remove the ineffective

queuing time. Additionally, we verify that the significantly positive association between queuing time and

time valuation reported in Table 3 remains robust when replacing the dependent variable of total queuing

time with effective queuing time (see Table B2 in Online Appendix B). Overall, these findings indicate that

although observable queues do not negatively impact the overall efficiency of the queue rule at the aggregate

level, participants engage in switching behavior much more frequently and waste more unproductive time in

the process. This also implies that observable queues lead to significantly less effective queuing time, which

is the only information relevant to the final allocation of slots. Therefore, in the sense of reducing effective

queuing time and that exactly three participants per group stayed in the queue till the end, making queues

observable does make coordination more efficient. However, the presence of significant ineffective queuing

time due to frequent switching negates this efficiency gain.

Finally, we have collected data on the queue length and the participants’ positions in the queue at the mo-

ment when they switched from the booking task to the production task. This information allows us to

further explore the reasons for participants’ switching behavior. Overall, in the Queue5_rank treatment,

participants’ switching behavior is largely rational. 40.0% of switches occur when the queue is too short

(i.e., when the queue length is shorter than three), while 50.4% of switches take place when the queue is

too long and the participant is not in a good position to secure the slot (i.e., when both the queue length and

the participant’s position are greater than three). Conversely, only 9.6% of switches can be categorized as

presumably irrational or at least riskier than the first two types; these switches occur when the participant

is favorably positioned in a long queue (i.e., when the queue length is equal to or greater than three and

their queuing position is equal to or fewer than three). Furthermore, we examine the cumulative ineffective

queuing time associated with each type of switching. We find that the last type of switching, which is pre-

sumably irrational, has a disproportionately significant impact on overall efficiency: 41.1% of ineffective

queuing time can be attributed to this type. In contrast, switching due to a short queue accounts for 33.4% of

ineffective queuing time, whereas switching related to a long queue constitutes the remaining 25.4%. This

pattern appears to remain consistent in the later rounds of the experiment. Thus, a small fraction of plausibly

irrational switching behavior (around 10%) results in a disproportionate impact on ineffective queuing time

(around 40%).
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Result 3. In both queue treatments, participants with higher time valuations are significantly more likely

to spend nearly all their time queuing and less likely to drop out altogether. Observable queues generate

less bimodal behavior and induce significantly more switching behavior. However, since observable queues

simultaneously decrease effective queuing time and increase ineffective queuing time attributable to task-

switching, they do not impact the total time spent in the booking system.

4.2 Quantifying different sources of efficiency loss

The previous subsection shows that the lottery rule is superior to the queue rule in terms of productive

efficiency. In this subsection, we compare the different types of efficiency losses at the group level across

the two allocation rules. Table 6 reports the quantified efficiency loss (in ECUs) for each treatment, including

the total efficiency loss, which is the sum of productive efficiency loss and allocative efficiency loss. Overall,

each type of efficiency loss is reasonably close to the predicted level in each treatment. More importantly, we

find strong support for Hypotheses 3and 4(b). While allocative efficiency loss is significantly higher under

the lottery rule than the queue rule (Queue5 vs. Lottery5: p = 0.078; Queue5_rank vs. Lottery5: p = 0.010,

Wilcoxon rank-sum test), productive efficiency loss is significantly higher under the queue rule than the

lottery rule (p = 0.004 in both comparisons) and exceeds allocative efficiency loss by orders of magnitude.

As suggested in the previous subsection, Queue5_rank results in more ineffective queuing time and less

effective queuing time than Queue5, with the two effects canceling each other out. Consequently, making

queuing information transparent to participants does not help mitigate overall productive inefficiency.

Table 6: The Breakdown of Efficiency Loss

Queue5 Queue5_rank Lottery5
Observed Predicted Observed Predicted

Allocative efficiency loss 74.990 74.490 35 105.375 100
(13.036) (7.061) (6.835)

Productive efficiency loss 1142.742 1169.229 1267 32.545 0
(42.173) (25.980) (2.041)

Total efficiency loss 1217.731 1243.719 1302 137.921 100
(40.676) (27.027) (6.747)

Obs. (group × round) 96 96 96
Notes: Standard errors are in parentheses.

Result 4. Compared to the lottery rule, the queue rule results in significant losses in productive efficiency,

which outweigh its advantages in allocative efficiency, leading to a considerably greater overall efficiency
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loss. Ranking information about queues does not impact either type of efficiency.

5 Experiment 2: Robustness Check in More Complex Environments

In this section, we briefly report results from a robustness experiment which shares a similar research pur-

pose as Experiment 1 but uses a more complex experimental design that can perhaps represent some real-

world situations more closely. The overall takeaway message, however, is similar in both experiments: the

productive efficiency loss under the queue rule is overwhelmingly large compared to any potential gain in

the allocative efficiency. A detailed report on Experiment 2 is provided in Online Appendix D.

Experiment 2 has two major differences from Experiment 1. First, the abstract-effort production task is

replaced by a real-effort production task. A participant’s payoff in this task is determined by the number

of correctly solved problems. On average a participant who spends a longer time on the production task

will receive a higher payoff, but now her opportunity cost of time becomes endogenous and can vary across

time. Second, Experiment 2 has two stages. The first stage is similar to that of Experiment 1. The second

stage models real-life situations in which some participants who fail to book slots in stage 1 may still visit

the booking system to search for any remaining or canceled slots. Therefore, we let any unassigned slots in

stage 1 be available at the beginning of stage 2. Furthermore, exactly one of the slots allocated in stage 1 is

canceled in Stage 2, but the cancellation timing is randomly determined. Participants were informed of the

cancellation rule in the experimental instructions. In stage 2, only those who have not obtained a slot can

request one either on a first-come-first-served basis or through entering another lottery. In addition to the

booking task, participants may also work on the real-effort production task.

Using a between-subjects design, we first compare two solo-track booking systems that use either the queue

rule or the lottery rule exclusively in both stages. We also vary the degree of market competitiveness to

test for the robustness of our results. In such settings with real-effort production task, we distinguish be-

tween three sources of efficiency loss: inefficient allocation of booking slots (allocative efficiency loss), the

opportunity cost of time spent on the booking task (productive efficiency loss), and changes in on-the-job

productivity due to distraction of the booking task (behavioral efficiency loss). Consistent with Experiment

1, results from Experiment 2 also show that queue participants spend substantial amounts of time on the

booking task in both stages while lottery participants spend only a few seconds submitting their applications
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and the remainder of their time on the production task. The productive efficiency loss under the queue rule

outweighs the other two sources by a large margin, leading to a much lower overall efficiency under the

queue rule than the lottery rule. We further observe that allocative efficiency is actually not higher under

the queue rule, either. The reason is that most participants exhibit bimodal behavior under the queue rule

just like in Experiment 1: they spend either a few seconds or almost all of their time on the booking task.

However, unlike our finding in Experiment 1, this bimodal behavior is largely uncorrelated to their time

valuations, perhaps because it is much harder for participants to evaluate their opportunity cost of time due

to the endogenous nature of their productivity in the real-effort task.

In addition to the solo-track systems, we also design a novel dual-track booking system in which slots are

provided in two tracks, each implementing one of the two allocation rules, and each participant can freely

choose which track to enter at the beginning (but she cannot choose both).20 Our designed dual-track system

can serve two purposes. First, when the queue rule and the lottery rule have their distinct advantages—the

former may achieve higher allocative efficiency while the latter may achieve higher productive efficiency—

the designer may use the hybrid system to achieve a balance between their respective advantages. Second,

the designer may consider a transition from a queue rule to a more efficient lottery rule but worry that an

abrupt transition is not practical.21 The hybrid system can be used to help participants build familiarity

with both rules to facilitate the final transition. In our experiment, we are primarily interested in observing

whether participants are more likely to choose the lottery rule over the queue rule when both rules are

available and offer the same ex-ante chance of obtaining a slot. Specifically, in our dual-track system, slots

are split evenly between the queue track and the lottery track in stage 1. Stage 2 does not implement the

dual-track; it implements either the queue rule or the lottery rule depending on the treatment. We find that

participants are more likely to choose the lottery track over the queue track in stage 1 . We further find

that participant behavior under each track is similar to the corresponding solo-track system. Consequently,

those who choose the lottery track earn a higher payoff than those who choose the queue track, offsetting

their lower probability of obtaining a slot. The efficiency loss due to opportunity costs of time in the queue

track remains substantial. But the total efficiency loss is lower than that in the solo-track queue system due

20Similar dual-track or hybrid systems where individuals can choose between lottery and auction systems are observed in the
real world. One example is the assignment of vehicle licenses in major cities of China (Li, 2018; Huang and Wen, 2019). Beijing
uses lotteries exclusively; Shanghai uses only auctions; Guangzhou, Shenzhen, Tianjin, and Hangzhou use a dual-track system.

21For example, participants may have concerns about the transparency of lottery draws, especially those for high-stakes goods or
services; they may also be concerned about the inability of a lottery to distinguish participants with greater needs.

22



to a lower number of participants choosing the queue track in the dual-track setting. Finally, the dual-track

system reduces allocative efficiency loss by channeling some participants with high valuations to compete

for slots in the queue track.

6 Concluding Remarks

When scarce resources are provided for free or under price control, how to ration resources becomes a

design problem. To the best of our knowledge, our paper is the first to systemically evaluate efficiency

across various allocation systems in a multi-tasking environment, with a particular focus on the externality

of an allocation system on parallel production tasks. One commonly used rule, the queuing system, is

criticized for efficiency losses due to the opportunity cost of time spent on the queuing process.

Specifically, we develop a flexible dual-tasking experimental framework to compare the performance of a

queue rule based on a first-come, first-served principle with that of a lottery rule that relies on a random

selection process to allocate slots on a booking system when participants can also participate in a parallel

production task. Our experimental results show that the lottery rule yields superior efficiency. Under the

queue rule, the opportunity cost of queuing time is substantial enough to overwhelm other efficiency sources,

leading to lower participant welfare. Further, our findings indicate that while providing ranking informa-

tion to queuing participants reduces their effective queuing time, it simultaneously results in much more

frequent switching between the two tasks, leading to significant ineffective queuing time. Consequently, the

loss in productive efficiency attributed to these switches undermines the efficiency gains achieved through

improved coordination. Therefore, although enhancing the observability of queues may facilitate more effi-

cient coordination, overall efficiency would be significantly higher if the time wasted due to task switching

could be minimized.

While our experimental results strongly support the superiority of the lottery rule to the queue rule, we

acknowledge that the precise magnitude of each source of efficiency loss depends on the valuation of the

appointment slot and the opportunity cost of time chosen in our experiment. Therefore, to what extent

a real-life queuing system is inefficient requires careful calibration of these two theoretical parameters. In

situations where the valuation of a slot is much higher than the opportunity cost of time, such as applying for

an immigrant visa, the concern for allocative efficiency dominates and could justify the use of the queue rule
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rather than the lottery. Nevertheless, for such situations, our finding of bimodal behavior suggests that the

presumed greater allocative efficiency of the queue rule cannot be taken for granted because, in high-stakes

booking systems, people are more likely to spend all their time queueing, resulting in what is effectively

a random allocation. In some applications, the lottery system may also entail some hidden costs due to

its low participation cost, which attracts more applicants than otherwise desirable and then reduces every

applicant’s expected payoff in the lottery system. To what extent this issue reduces the attractiveness of the

lottery system is another direction for future research.

Our experimental framework is versatile enough to be applied to numerous settings. It can form the basis

for more complex booking scenarios, such as when participants have preferences over different slots. For

example, some patients visiting hospitals may prefer morning slots over afternoon ones. One potential so-

lution to this issue is to borrow process steps from school choice matching algorithms. Participants begin

by submitting rank-order lists of slots to reveal their preferences. The process then uses a matching algo-

rithm (which could involve lotteries to break ties) to find an allocation of slots. This system can avoid the

competition via queuing as the lottery rule.

Finally, it is worth mentioning that although this paper primarily discusses offline booking systems, where

individuals physically wait in line, the externalities of queuing may also manifest in online booking systems,

wherein individuals wait in front of electronic devices or in telephone queues. Although such queues osten-

sibly allow individuals to engage in other activities while waiting, in highly competitive scenarios, they may

become distracted or may focus solely on the booking system, expending time or energy being “glued to

their device” until slots are allocated. Such experiences are prevalent in contemporary society. The extent to

which these online booking systems generate externalities and productive inefficiencies is likely contingent

upon specific contexts and is an important avenue for future research.
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E-Companion

A Proof of Proposition 1

Let t(y) denote the symmetric equilibrium strategy; that is, a participant with time valuation y bids t(y))

units of time in the queue for slots. For any participant i, to win a slot in the equilibrium, her time valuation

must exceed the m-th largest of the remaining n−1 participants’ time valuations. Let H and h respectively

denote the cumulative distribution function and the density function of the m-th largest value among n− 1

independent draws from F :

H(y) =
n−1

∑
ℓ=n−m

(
n−1
ℓ

)
[F(y)]ℓ[1−F(y)]n−1−ℓ.

If a participant i bids bi units of time in the queue, her winning probability will be H(t−1(bi)). No matter

she wins or not, she needs to pay bi ·wi, the opportunity cost of time. Assuming that the other participants

follow the equilibrium strategy, i needs to solve the following problem:

max
bi

[
H(t−1(bi))yiwi −biwi

]
, (1)

which is equivalent to

max
bi

[
H(t−1(bi))yi −bi

]
. (2)

The first-order condition to (2) is

h(t−1
nr (bi))

dt−1
nr (bi)

dbi
yi −1 = 0. (3)

In equilibrium, this equation holds when bi = t(yi). So t−1(bi) = yi and dt−1(bi)
dbi

= 1
t ′(yi)

.

Then

t ′(yi) = h(yi)yi. (4)
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Given the boundary condition t(y) = 0, we obtain

t(yi) =
∫ yi

y
h(s)sds = yiH(yi)−

∫ yi

y
H(s)ds. (5)
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B Additional Figures

Figure B1: The evolution of percentage of time spent on the booking system

Figure B2: The evolution of effective and ineffective queuing time in Queue5_rank
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Table B1: Random effects regressions on the switching frequency in Queue5_rank

Queue5_rank
Time valuation 0.738

(0.685)
Constant 18.254***

(2.422)

Clusters 6
N 480

Notes: Standard errors clustered at the session level are in parentheses. We rescale the slot valuation and time cost per minute by

dividing them by 100. The time valuation is the ratio of the slot valuation and the time cost per minute.

Table B2: Random effects regressions on effective queuing time

Queue5 Queue5_rank
Time valuation 29.089*** 8.687***

(2.022) (1.631)
Slot valuation 26.559*** 11.559***

(3.685) (1.067)
Time cost per minute -106.358*** -23.386**

(5.612) (9.614)
Constant -75.606*** 42.932** 3.259 10.403

(7.044) (16.800) (6.413) (14.059)

Clusters 6 6 6 6
N 480 480 480 480

Notes: Standard errors clustered at the session level are in parentheses. We rescale the slot valuation and time cost per minute by

dividing them by 100. The time valuation is the ratio of the slot valuation and the time cost per minute.
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C Instructions of Experiment 1

In the following, we translate the original instructions in Chinese into English for all treatments.

C.1 Instructions for Queue5 and Queue5_rank

The text that differs between Queue5 and Queue5_rank is highlighted in red.

General Information

You are taking part in a decision-making experiment. Please read the instructions carefully. The instructions

are the same for every participant. Please do not communicate with each other during the experiment. Turn

off your mobile phone and put it into the envelop on your desk. If you have a question, feel free to raise

your hand, and an experimenter will come to help you.

You have earned 15 RMB for showing up on time. In addition, you can earn more money in this experiment.

The amount of money you earn will depend upon the decisions you and other participants make. Your

earnings in this experiment are expressed in EXPERIMENTAL CURRENCY UNITS, which we will refer

to as ECUs. At the end of the experiment you will be paid using a conversion rate of 1 RMB for every 12

ECUs of earnings from the experiment.

Your final payment will be paid to you via bank transfer within 2-3 days on completion of today’s experi-

ment. All decisions are anonymous. That is, other participants will not know about your identity or your

final payment.

Overview of the experiment

The experiment consists of 8 rounds. Each round lasts 4 minutes. A clock on the upper-right corner of the

screen shows the time already past in each round. Each round has two tasks and each participant’s earnings

are sum of the earnings from the two tasks. At the beginning of each round, you can choose which task

to start with: Task 1 or Task 2. The two tasks are displayed on different screens. You may freely switch

between the two task screens at any time you want. But you cannot see both task screens at the same time.

Task 1 is about booking an appointment slot at a public office such as hospital. In each round, you will be
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randomly matched into groups of five participants each. This means that your group members will most

likely be different in each round. Each group has three appointment slots available and each participant

can only book up to one slot. In each round, the private valuation for a slot is determined randomly and

independently for each participant, and will be a natural number between (and including) 400 to 600 ECUs.

Each participant is only informed about her own valuation, but not about other group members’ valuations.

A participant who books a slot will receive ECUs equivalent to her valuation and the one who does not will

receive 0. We will discuss the booking procedure in Task 1 in more detail.

Task 2: In addition to the appointment booking task, You can also enter Task 2. In each round, your income

from Task 2 depends on the time you spend on the task interface. Specifically, your total income from this

task = total time spent on the Task 2 interface (in seconds) × income per second. The income per second is

an independently and randomly drawn number between 1.50 and 2.50 (accurate to two decimal places) and

is randomly selected for each round. Each person only knows their own income per second but not that of

others. Meanwhile, when you are on the Task 2 interface, you can participate in a simple counting game:

counting the number of white dots in a series of dark-shaded squares. You will enter the number of dots into

the box next to the table. After you have entered the number, you can click the NEXT button. No matter

whether the answer is correct or not, a new square will be generated. Please note that you can also choose

not to participate in this game and just stay on the Task 2 interface. Your income from this task is not related

to the number of questions answered or whether they are correct or not.

We will now describe in more detail the appointment booking system in Task 1.

Start from 00:00 (minutes: seconds), end at 04:00. The 3 slots will become immediately available at 04:00

and will be assigned on a first-come-first-served basis in the following way: Each participant can choose to

switch to and stay on the booking screen to reserve a position in a queue. Those who switch to the booking

screen earlier reserve a front position. However, if a participant switches to the counting-dots task screen

and then back to the booking screen, he will have to go to the back of the queue. [Queue5_rank only: When

you enter the appointment system, the interface will display the current number of people in line and your

position in the queue.] When 4:00 is reached, the slots will be assigned as follows:

1. If the number of participants staying in the queue > 3, each of the first three in the queue will obtain

a slot.
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2. If the number of participants staying in the queue ≤ 3, each of them obtains a slot. Any remaining

slot(s) will be wasted.

Payoff

At the end of each round, your round payoff is the sum of the payoffs from the two tasks. At the end of the

experiment, one randomly chosen round will be paid out, in addition to the show-up fee.

This completes the instructions. To ensure every participant understand the instructions, please answer the

quiz on your screen. If there is any question, please raise your hand. Once everyone correctly answers the

quiz, we will start the experiment.

C.2 Instructions for Lottery5

General Information

You are taking part in a decision-making experiment. Please read the instructions carefully. The instructions

are the same for every participant. Please do not communicate with each other during the experiment. Turn

off your mobile phone and put it into the envelop on your desk. If you have a question, feel free to raise

your hand, and an experimenter will come to help you.

You have earned 15 RMB for showing up on time. In addition, you can earn more money in this experiment.

The amount of money you earn will depend upon the decisions you and other participants make. Your

earnings in this experiment are expressed in EXPERIMENTAL CURRENCY UNITS, which we will refer

to as ECUs. At the end of the experiment you will be paid using a conversion rate of 1 RMB for every 12

ECUs of earnings from the experiment.

Your final payment will be paid to you via bank transfer within 2-3 days on completion of today’s experi-

ment. All decisions are anonymous. That is, other participants will not know about your identity or your

final payment.

Overview of the experiment

The experiment consists of 8 rounds. Each round lasts 4 minutes. A clock on the upper-right corner of the

screen shows the time already past in each round. Each round has two tasks and each participant’s earnings
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are sum of the earnings from the two tasks. At the beginning of each round, you can choose which task

to start with: Task 1 or Task 2. The two tasks are displayed on different screens. You may freely switch

between the two task screens at any time you want. But you cannot see both task screens at the same time.

Task 1 is about booking an appointment slot at a public office such as hospital. In each round, you will be

randomly matched into groups of five participants each. This means that your group members will most

likely be different in each round. Each group has three appointment slots available and each participant

can only book up to one slot. In each round, the private valuation for a slot is determined randomly and

independently for each participant, and will be a natural number between (and including) 400 to 600 ECUs.

Each participant is only informed about her own valuation, but not about other group members’ valuations.

A participant who books a slot will receive ECUs equivalent to her valuation and the one who does not will

receive 0. We will discuss the booking procedure in Task 1 in more detail.

Task 2: In addition to the appointment booking task, You can also enter Task 2. In each round, your income

from Task 2 depends on the time you spend on the task interface. Specifically, your total income from this

task = total time spent on the Task 2 interface (in seconds) × income per second. The income per second is

an independently and randomly drawn number between 1.50 and 2.50 (accurate to two decimal places) and

is randomly selected for each round. Each person only knows their own income per second but not that of

others. Meanwhile, when you are on the Task 2 interface, you can participate in a simple counting game:

counting the number of white dots in a series of dark-shaded squares. You will enter the number of dots into

the box next to the table. After you have entered the number, you can click the NEXT button. No matter

whether the answer is correct or not, a new square will be generated. Please note that you can also choose

not to participate in this game and just stay on the Task 2 interface. Your income from this task is not related

to the number of questions answered or whether they are correct or not.

We will now describe in more detail the appointment booking system in Task 1.

Start from 00:00 (minutes: seconds), end at 04:00. Every participant can switch to the booking screen at

any time and apply for one slot by pressing the BOOKING button. When 4:00 is reached, the slots will be

assigned as follows:

1. If the number of applicants > 3, all applications will be put into a virtual urn. Then, one by one,
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applications are randomly drawn from the urn to fill the three slots.

2. If the number of applicants ≤ 3, each applicant obtains a slot. Any remaining slot(s) will be wasted.

Payoff

At the end of each round, your round payoff is the sum of the payoffs from the two tasks. At the end of the

experiment, one randomly chosen round will be paid out, in addition to the show-up fee.

This completes the instructions. To ensure every participant understand the instructions, please answer the

quiz on your screen. If there is any question, please raise your hand. Once everyone correctly answers the

quiz, we will start the experiment.
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D Detailed Report on Experiment 2

D.1 Design of Experiment 2

To validate the results from Experiment 1, we conduct Experiment 2, incorporating two main features.

First, we extend the one-stage booking design to a two-stage design. Second, we replace the abstract-effort

task with a real-effort task. Building on these two common features, we also manipulate two additional

factors: the competitiveness of securing a slot and whether a solo-track or dual-track system is implemented.

Furthermore, similar to Experiment 1, each participant can acquire at most one slot per round, with their slot

valuation drawn independently from a uniform distribution of integers between 400 and 600 Experimental

Currency Units (ECUs).

Two-Stage Booking System

In each round, the booking task consists of two stages, each lasting four minutes.

• Stage 1: the first stage is the same as that in Experiment 1. The only difference is that now the

unassigned slot in stage 1 is not wasted, instead, it becomes available for stage 2 of the booking task

at the beginning. Moreover, if at least one slot is allocated in stage 1, one slot will be randomly

selected and canceled at a random moment in stage 2 and then becomes immediately available in the

booking system. The participant whose slot is canceled will still obtain a payoff equivalent to her

valuation and cannot book a slot again.22

• Stage 2: Only participants who have not obtained a slot in stage 1 can participate in the booking task

in stage 2. In this stage, available slots consist of those unassigned after stage 1 and a slot created by

the random cancellation of an assigned slot. The unassigned slots are available in the booking system

from the start of stage 2, whereas the canceled slot becomes available at the moment of cancellation.

Under the queue rule, participants can enter the booking system at any time and observe the number

of currently available slots. If a slot is available, a participant can book it immediately. However, if

the system shows no available slot, participants cannot be certain whether this is because all slots have

22This setup is designed to mimic real-life situations in which people with allocated appointments may cancel these appointments,
making these appointments available to others. To simplify our decision-making environment, we determine a cancellation, as
opposed to a participant choosing to cancel, as the cancellation source is not essential for our research purposes.
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already been assigned or because the cancellation has not yet happened.

In contrast, under the lottery rule, participants can enter the booking system at any time and apply by

pressing the application button, even if the system shows no currently available slots. All applications

are collected in a virtual urn. At the end of stage 2, applications are randomly drawn from the urn one

by one to fill any available slots.

The timeline of Experiment 2 in each round is shown in Figure D1.

Figure D1: Timeline of the dual-tasking environment

0 minute 4 minute (slots released) 8 minute

Stage 1 of booking task Stage 2 of booking task

Real-effort task

Real-Effort Production Task

In the production task, we ask participants to count the number of white dots in a series of dark-shaded

squares (see Figure D2). In each square, both the total number (between 35 and 54, inclusive) and the

positions of dots are randomly generated. Each correct answer is rewarded by 35 ECUs.23 This task is

designed to mimic the type of task that may compete with a queuing activity for a participant’s time. To

build task familiarity and thus help participants gain a sense of their productivity level, participants are asked

to work on the production task for five minutes at the beginning of each session without any reward.24

D.1.1 Treatments

In Experiment 2, we implement a 2×2 design by varying the allocation rule (Queue vs. Lottery) and whether

a solo-track or dual-track system is used in stage 1. Within the solo-track treatments, we also vary the level

of market competitiveness. Under low market competitiveness, each group consists of five participants

vying for three slots. We refer to the treatment adopting the queue (lottery) rule and low competitiveness as

23The piece rate is chosen so that the expected payoffs from working only on the production task and from obtaining a slot in the
booking task are largely comparable. This payoff selection is intended to highlight the trade-off in time allocation between the two
tasks.

24The average per-minute productivity for our full sample (n = 344) in the five-minute trial round is about 1.12 correctly-answered
squares (s.d. = 0.59), compared to 1.72 (s.d. = 0.58) in the payment rounds.
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Figure D2: Screenshot of the counting-dots task

Solo-Queue5 (Solo-Lottery5). Under high market competitiveness, each group consists of seven participants

contending for two slots. We refer to the treatment adopting the queue (lottery) rule and high competitiveness

as Solo-Queue7 (Solo-Lottery7). The comparisons between Solo-Queue5 and Solo-Lottery5 and between

Solo-Queue7 and Solo-Lottery7 allow us to study whether the lottery rule improves productive efficiency

compared to the queue rule. Further, implementing different levels of market competitiveness allows us to

study the robustness of our results.

In the dual-track treatments, we examine only the high market competitiveness environment because it

provides greater scope for us to observe if there is any tendency among participants to prefer one track over

the other. Specifically, each track in stage 1 under high market competitiveness has exactly one available slot.

In the Dual-Queue (Dual-Lottery) treatment, we implement the queue (lottery) rule in stage 2. Observing

how participants make track decisions in stage 1 allows us to examine whether participants generally prefer

the lottery rule over the queue rule. We also compare behavior under each track in the dual-track system

with behavior in the corresponding solo-track system. This allows us to see whether the dual-track system

finds the sweet spot between improving overall productive efficiency (compared to the solo-track queue

treatments) and respecting distinct individual preferences (i.e., whether participants with high valuations

select the queue track). Finally, we examine whether the stage 2 rule affects participants’ track decisions

and behavior in stage 1. Table D1 summarizes the main features of our experimental design.
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Table D1: Design of Experiment 2

Treatments Allocation rule Competitiveness # of participants # of matching groups
Solo-track:
Solo-Queue5 Queue Low 60 6
Solo-Lottery5 Lottery Low 60 6
Solo-Queue7 Queue High 56 4
Solo-Lottery7 Lottery High 56 4
Dual-track:

Dual-Queue
Dual (stage 1)
Queue (stage 2)

High 56 4

Dual-Lottery
Dual (stage 1)
Lottery (stage 2)

High 56 4

D.1.2 The dual-track booking system

While we expect that participants in our experiment will achieve higher productive efficiency under the

lottery versus queue rule, it is possible that they may still choose the queue rule if given a chance to choose.

First, people may dislike the uncertainty inherent in the lottery rule and choose the queue rule to feel a sense

of control over the process, even at the cost of productive efficiency. Second, participants may have concerns

about the transparency of a lottery. While this concern is unlikely to matter in our lab environment, it may

have traction outside of a lab setting if manipulation or corruption are suspected, especially in high-stakes

situations. Finally, an abrupt transition from one rule to another may be perceived as a violation of the moral

principle of free-will decision-making.

While addressing all these practical concerns is challenging and out of the scope of our paper, to provide

some resolution to the question of rule preference from the market design perspective, we design a novel

dual-track booking system and implement it in the lab. The basic idea behind the dual-track system is that

people can freely choose between the two allocation rules. This system can balance productive efficiency

with participant preferences and free choice. Further, our dual-track system allows people to learn both rules,

building familiarity with lottery systems for the later potential transition. Under the dual-track environment,

our main interest is to observe whether participants are more likely to choose the lottery rule after having

gained experience with both rules.

The dual-track system differs from the solo-track system in that participants can choose either a lottery

or queue track at the beginning of stage 1. Each track has the same number of available slots. After all
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participants in a group make their track decisions, they are placed into subgroups under their given track,

where they are informed of the number of participants in their subgroup. Stage 1 then proceeds in the two

separate subgroups with one implementing the queue rule and the other the lottery rule. Note that if one

track is not chosen by any participant, the slots in that track transfer over to stage 2.

In stage 2, we merge the two subgroups and implement only one allocation rule. To keep the cancellation

procedure comparable to that of the solo-track systems, only one of the assigned slots in stage 1 is randomly

selected to be canceled at a random moment. We do not apply a dual-track system in stage 2 as it is likely

that the canceled slot will be the only available slot.25

The dual-track system combines the queue and lottery rules in stage 1 and implements one of these rules in

stage 2, depending on the treatment condition. The system is comprised of the following components.

• Track decision: At the beginning of each round, each participant chooses to enter either the track

with the queue rule or the track with the lottery rule. This decision is binding for that round.

• Stage 1: After all participants have made their track decisions, one track assigns slots according to

the queue rule while the other track uses the lottery rule. Any unassigned slots from the two tracks

are transferred to stage 2.

• Stage 2: Participants who have not received slots in stage 1 are allowed to book a slot in stage 2.

Depending on the treatment condition, stage 2 uses either the queue rule or the lottery rule.

D.1.3 Procedure

Experiment 2 was conducted at the Nanjing Audit University Economics Experimental Lab with a total

of 344 university students, using the software z-Tree (Fischbacher, 2007). Each session consists of two

independent matching groups of 10 participants (for Solo-Queue5 and Solo-Lottery5) or 14 participants (for

Solo-Queue7, Solo-Lottery7, Dual-Queue, and Dual-Lottery). Within each matching group, participants are

randomly re-matched in each round according to the group size stipulated by the treatment. After every

round, all participants receive feedback about whether they were allocated a slot, whether an allocated slot

25Suppose we keep our dual-track system in stage 2. If the canceled slot comes from one track in which each member has
obtained a slot in stage 1, then this slot will be wasted if we do not allow members from the other track to book it. Because we want
to use the same cancellation procedure across all treatments, keeping the stage 2 rule comparable across treatments helps avoid
such logistic subtleties.
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of theirs was cancelled, and what their respective booking and production payoffs are. In the dual-track

treatments, they also learn the number of participants and the average payoff in each track. At the end of

a session, one round is privately and randomly chosen for each participant and the participant receives her

payoff from that round.

During the experiment, as participants arrived, they were randomly seated at a partitioned computer terminal.

The experimental instructions were given to participants in printed form and were also read aloud by the

experimenter. Participants then completed a comprehension quiz before proceeding. At the end of the

experiment, they completed a questionnaire concerning their demographics and a number of psychological

measures. For every 10 ECUs, participants earned 1 RMB. A typical session lasted about 2 hours with

average earnings of 80.7 RMB, including a show-up fee of 15 RMB.

D.2 Evaluation Criteria and Hypotheses

D.2.1 Evaluation criteria

Same as Experiment 1, we also use allocative efficiency and productive efficiency in Experiment 2. Since

we use real-effort, the productive efficiency loss can occur through strategic and behavioral efficiency loss.

Strategic efficiency loss is measured as the opportunity cost of time spent on the booking system:

Strategic efficiency loss = ∑
n
i=1E[tiwi].

We expect that participants’ productivity may change over time in our experiments, and in particular, there

may be productivity change due to behavior factors. On the one hand, subjects may get to “rest” while wait-

ing in the queue (as opposed to working continuously on the productive task)which could lead to increased

productivity after a period of waiting.26 On the other hand, there might be productive loss due to mental

distraction in stage 2 of the queue treatments. Though such differences can go either way, we refer it as

behavioral efficiency loss. Formally, in stage 2, let wactual
i denote the actual productivity of participant i in

the production task, and let t2
i denote the amount of time that i spends on the booking task. Then,

Behavioral efficiency loss = ∑
n
i=1E[(T − t2

i )(wi −wactual
i )].

Consistent with Experiment 1, in terms of efficiency, the queue rule is expected to achieve a higher level

26We thank an anonymous referee for suggesting this possibility.
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of allocative efficiency than the lottery rule in Experiment 2. However, the queue rule may yield greater

productive efficiency loss than the lottery rule. Examining the components of productive efficiency, the

queue rule requires participants to spend valuable time queuing for slots in stage 1 and competing by speed

(and luck) to obtain available slots in stage 2, leading to a loss in strategic efficiency. By contrast, the lottery

rule requires only a few seconds on the booking system to press an application button. In addition, we are

agnostic towards the direction of behavioral efficiency loss.

Table D2 summarizes the comparisons between the two solo-track rules in terms of efficiency.

Table D2: Efficiency and Fairness under Queue and Lottery

Queue Lottery
Allocative efficiency loss in the booking system Low High

Productive efficiency loss in the production task Strategic High Low
Behavioral Not Sure

Next, we discuss our evaluation criteria for the dual-track system. We introduce a dual-track system as both

a structure that addresses practical concerns and a useful compromise between the queue and lottery rules.

While the lottery rule yields better productive efficiency, the queue rule gives participants who value a slot

more than productive efficiency the opportunity to express their preference and potentially increase their

welfare.27 This welfare improvement, however, is not guaranteed since they still face a risk of losing the

competition for a slot.

D.3 Experimental Results

We first present the results from the four solo-track treatments that implement either the queue rule or the

lottery rule, and then quantify and compare the different sources of efficiency loss across these treatments.

We then present the results from the two dual-track treatments.

D.3.1 Solo-track treatments

We first examine how participants allocate their time between the booking task and the production task in

both stages (Figure D3). In stage 1, regardless of the level of market competitiveness, we see that participants

in the queue treatment spend almost two-thirds of their time on the booking task. By contrast, participants

27It is worth noting that the preference for one system over the other may be influenced with strategic considerations. For
example, subjects may opt for the queue if they believe that the majority would choose the lottery.
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in the lottery treatment spend only a few seconds on the booking task. This substantial behavioral difference

translates into a much lower production task output in the queue versus lottery treatment. When market

competition is low, the average output in the production task is 2.6 in stage 1 under the queue rule, compared

to 6.1 under the lottery rule (p = 0.004, Wilcoxon rank-sum test).28 The gap is even greater when market

competition is high, with an average output of 2.2 under the queue rule and 6.8 under the lottery rule

(p = 0.021).

Figure D3: Percentage of time spent on the booking system in the solo-track treatments

Notes: Error bars represent one standard error of means clustered at the matching group level. Low competitiveness is defined as a

market with 5 participants and 3 slots (Solo-Queue5 and Solo-Lottery5), while high competitiveness is defined as a market with 7

participants and 2 slots (Solo-Queue7 and Solo-Lottery7).

Turning to our stage 2 results, we see from Figure D3 (right panel) that, while queue participants still spend

significantly more time on the booking task than do lottery participants (10.3% versus 2.6%, p= 0.004 in the

low competitiveness environment; 18.0% versus 3.5%, p = 0.021 in the high competitiveness environment,

Wilcoxon rank-sum test), the gap is much smaller than that observed in stage 1. This likely reflects the

lower number of participants who still need a slot in this stage. It may also reflect the design feature that

participants can choose to freely switch between the booking and production tasks in stage 2. Moreover, the

greater ratio of participants to slots in the high competitiveness environment means the average time spent

28Unless otherwise stated, we treat each matching group as a unit of observation in all reported statistics.
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on the booking system is significantly higher compared to the low competitiveness environment (18.0%

versus 10.3%, p = 0.019). Finally, we verify that the overall time allocation pattern in stage 2 is driven

by those seeking slots in this stage. Figure D4 shows the percentage of time spent on the booking task

separately for those who have (have not) obtained a slot in stage 1. It is clear that the overall pattern in

stage 2 is driven mainly by participants seeking slots. Regardless of the level of market competitiveness,

these participants spend significantly more time on the booking task under the queue rule than the lottery

rule (19.5% versus 3.7%, p = 0.004 in the low competitiveness environment; 22.9% versus 3.9%, p = 0.021

in the high competitiveness environment, Wilcoxon rank-sum test). By contrast, participants who obtain

a slot in stage 1 spend only slightly more time on the booking task under the queue rule than the lottery

rule (4.1% versus 1.8%, p = 0.007 in the low competitiveness environment; 4.9% versus 2.5%, p = 0.083

in the high competitiveness environment). While this may reflect curiosity about the allocation process for

the remaining slots, the screen layout under the lottery rule is similar in both stages and no information

about allocations is revealed until the end of each stage. In sum, while not as pronounced as in stage 1, the

opportunity cost of time in stage 2 is still higher under the queue rule than the lottery rule, especially when

slots are scarcer. Altogether, we observe consistent results with Result 1 in the main text.

Next, we examine the relationship between time valuation and the chance of winning a slot. Before pre-

senting the results, we explain how the time valuation is calculated for each individual. We first measure

individual productivity considering productivity in stage 1 as well as in stage 2 if a participant has obtained

a slot in stage 1, since we expect productivity under these two cases is unlikely to be influenced by the book-

ing system.29 Specifically, in stage 1 we observe participants either work on the production task continually

or stay on the booking system, with few instances of distractive switching (on average, less than one switch

per round). Likewise, in stage 2, when some participants have already obtained a slot, their productivity

is unlikely to be influenced by the booking system. Thus, to measure individual productivity, we first take

the average of each individual’s productivity across stage 1 and stage 2 (if the individual has obtained a

slot in stage 1) weighted by the respective time spent on the production task. We then take the average

of each individual’s productivity across all eight paying rounds to obtain our measure of individual (time-

invariant) productivity. Finally, we calculate the time valuation for each individual in each round as the ratio

29The lack of a performance incentive in the trial round precludes its use as a productivity indicator. Furthermore, if we use
only stage 1 productivity as our measure of individual productivity, a significant portion of participants’ productivity will not be
measured since they have chosen to spend almost all their time queuing in stage 1 in almost all rounds.
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Figure D4: Percentage of time spent on the booking system in stage 2 in the solo-track treatments

Notes: Error bars represent one standard error of means clustered at the matching group level. The graph is drawn both for

participants who failed to obtain a slot in stage 1 (left) and for those who already have secured a slot in stage 1 including ones

whose slots are later canceled (right). Low competitiveness stands for markets with 5 participants and 3 slots (Solo-Queue5 and

Solo-Lottery5), while high competitiveness stands for markets with 7 participants and 2 slots (Solo-Queue7 and Solo-Lottery7).

of the monetary valuation to individual productivity. Figure D5 shows the distribution of the computed time

valuation across all treatments, showing a relatively smooth and left-skewed distribution.

Table D3: Random Effects Probit Regressions on the Likelihood of Obtaining a Slot

Average marginal effects
Solo-Queue5 Solo-Queue7

Both stages Stage 1 Both stages Stage 1
Time valuation -0.027 0.009 -0.009 -0.004

(0.017) (0.026) (0.011) (0.007)

Clusters 6 6 4 4
N 480 480 448 448

Notes: Standard errors clustered at the matching group level are in parentheses. We rescale the time valuation by dividing it by

100.

Table D3 report random effects probit regression where the dependent variable is whether a subject obtains

a slot and the independent variable is her time valuation, separately for when a slot is obtained in either stage

and when it is obtained in stage 1. We observe little evidence for a positive correlation between individuals’

time valuations and their likelihood of obtaining a slot in either Solo-Queue5 or Solo-Queue7. This result

19



Figure D5: Distribution of the computed time valuation across all treatments

is different from Result 2 of Experiment 1. To explore this finding in greater depth, we compare participant

time allocations in stage 1 for our two queue treatments. The findings in Figure D6 show a pattern of bimodal

behavior in both queue treatments: participants spend either very little time or almost all of their time on the

booking task. Specifically, we find that 66.0% (77.2%) of our observations in Solo-Queue5 (Solo-Queue7)

consist of those at the extremes (either fewer than 5 seconds or more than 235 seconds). In theory, this

bimodal behavior would happen if participants’ time valuation follows a bimodal distribution with peaks at

both ends. However, this is clearly not what we observe in our experiment. Thus, the tenuous relationship

between the time valuation and the likelihood of obtaining a slot is likely due to the weak relationship

between the time valuation and the time spent on the booking system. This is supported by Figure D7 which

show the weak association between time valuation and total queuing time in stage 1.

To further investigate this bimodal behavior, in Table D4 we report results from regressions of the bimodal

behavior on the time valuation. We find that the time valuation is only positively associated with more full

investment behavior in Solo-Queue7 but not in Solo-Queue5. By doing a similar regression analysis as in

Table D3, we also find that the time spent on the booking system is positively associated with a higher

likelihood of obtaining a slot. Therefore, the logical connection from a higher time valuation to more time
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Figure D6: Distribution of time spent on the booking system in stage 1 of the queue treatments

spent on the booking system and then to a higher likelihood of obtaining a slot appears to be established

in Solo-Queue7. However, this chain of relationship, albeit logically sound, is not sufficiently strong to

make a statistical difference. Intuitively, since more than 50% of participants chose to spend all the time

on the booking system irrespective of their time valuations, the slot allocation was essentially the outcome

of a lottery, and this is especially true in Solo-Queue7 in which there are only two slots in each group

of seven participants. Altogether, though we also observe bimodal behavior in Experiment 2, different

from Experiment 1 where participants with high (low) time valuation spend all (zero) time. Participants

in Experiment 2 choose to all-in regardless of their time valuation. One possibility is that the nature of

real-effort production makes it difficult for them to correctly evaluate their time valuation.

Table D4: Random effects probit regressions on the likelihood of full time investment

Average marginal effects
Solo-Queue5 Solo-Queue7

Time valuation 0.056 0.074∗∗

(0.047) (0.033)

Clusters 6 4
N 317 346

Notes: Standard errors clustered at the matching group level are in parentheses. The binary dependent variable is 1 if the total time

spent on the booking system in stage 1 is no less than 235 seconds (full time investment), and 0 if it is no more than 5 seconds

(dropping-out). We rescale the time valuation by dividing it by 100. ∗∗∗ p < 0.01.

Finally, we compare the different types of efficiency losses at the group level across the two allocation rules.
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Figure D7: Relationship between time valuation and percentage of queuing time in stage 1

Table D5 reports the quantified efficiency loss (in ECUs) of each type for each solo-track treatment. In

addition, the table reports the total efficiency loss, which is the sum of the three types of efficiency losses.

For strategic efficiency loss, we further distinguish our results by stage. For behavioral efficiency loss, we

also separate our results by participant subgroups: one in which participants have already obtained a slot in

stage 1 and the other in which participants have not obtained a slot in stage 1.

From Table D5, we see that the strategic efficiency loss is approximately one order of magnitude larger

than the allocative efficiency loss under the queue rule, while the two are very similar under the lottery

rule. Further, as expected, we see that the strategic efficiency loss under the queue rule is driven mainly

by queuing in stage 1, although the amount of loss in stage 2 is not negligible. The strategic efficiency

loss in either stage is significantly larger than the allocative efficiency loss (p < 0.001 in each comparison,

Wilcoxon signed-rank test).

Moreover, we find that the allocative efficiency loss is slightly higher under the queue rule than the lottery

rule, although this difference is only marginally significant in the low market competitiveness environment

(Solo-Queue5 versus Solo-Lottery5, p = 0.070; Solo-Queue7 versus Solo-Lottery7, p = 0.483; Wilcoxon

ranksum test).
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Table D5: The Breakdown of Efficiency Loss in Each Solo-track Treatment

Solo-Queue5 Solo-Queue7 Solo-Lottery5 Solo-Lottery7
Allocative efficiency loss 85.115 166.406 59.229 147.313

(9.603) (13.853) (5.454) (9.752)
Productive efficiency loss
Strategic 978.675 1242.640 53.892 101.092

(31.433) (40.859) (7.034) (10.133)
(a) Stage 1 844.057 965.542 24.578 43.712

(30.721) (34.088) (3.743) (7.664)
(b) Stage 2 134.618 277.098 29.314 57.380

(7.705) (19.205) (3.605) (5.144)
Behavioral -16.045 -67.570 -46.570 -32.914

(21.221) (29.468) (19.124) (25.022)
(a) Slot -5.569 -13.991 -32.353 -1.310

(15.073) (13.766) (14.024) (11.171)
(b) No slot -10.476 -54.016 -14.217 -31.604

(10.961) (21.27) (8.601) (19.587)

Total efficiency loss 1047.745 1341.476 66.552 215.490
(37.655) (56.442) (22.868) (28.941)

Obs. (group × round) 96 64 96 64
Notes: Standard errors are in parentheses.

Finally, we find no evidence of behavioral efficiency loss under the queue rule. In Solo-Queue5, the behav-

ioral efficiency loss does not differ from zero (p = 0.452, two-sided t-test). In Solo-Queue7, the behavioral

efficiency loss is significantly lower than zero (p = 0.025), driven mainly by participants who have not ob-

tained a slot in stage 1 (p = 0.014). 30 More importantly, however, the magnitude of the observed behavioral

efficiency loss or gain is one order of magnitude lower than that of the strategic efficiency loss.

Overall, our results show that the lottery rule is superior to the queue rule in terms of productive efficiency,

which is consistent with Experiment 1. However, with the real-effort production task, it is even not inferior

in terms of allocative efficiency.

30In the post-experimental questionnaire, participants were asked to indicate their level of anxiety in both stages on a scale from
1 (not anxious at all) to 7 (extremely anxious). On average, the reported level of anxiety is significantly higher in each stage under
the queue rule than the lottery rule. Further, the reported level of anxiety is higher in stage 2 than in stage 1 of both queue treatments
(p < 0.001, Wilcoxon signed-rank test). In the questionnaire, participants were also asked to indicate how the booking task had
disturbed their performance in the production task on a scale from 1 (not disturbing at all) to 7 (extremely disturbing). On average,
the reported level of disturbance is about 3.85 (s.d. < 2.00) in both queue treatments, suggesting no evidence for such a disturbance.
These results provide some suggestive evidence that the increased anxiety level in stage 2 is mainly performance-enhancing.
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D.3.2 Dual-track treatments

We have shown in our solo-track treatments that the lottery rule yields higher efficiency than the queue rule

in almost every aspect. In this section, we present our results from the two dual-track treatments which

allow participants to choose between the queue rule and the lottery rule in stage 1. In particular, we expect

that in stage 1 of the dual-track treatment, more participants choose the lottery track rather than the queue

track, and those with higher time valuations are also more likely to choose the queue track than the lottery

track.

Before presenting our main results, we briefly examine participants’ behavior under each track. In general,

we find similar behavior within an allocation rule across the solo- and dual-track systems. From Figure D8,

we see that dual-track queue (lottery) participants spend two-thirds (5%) of their time on the booking task

in stage 1. We further see that queue participants spend significantly more time on the booking task in stage

2 compared to lottery participants (16.9% versus 8.4%, p = 0.083, Wilcoxon rank-sum test).

Figure D8: Percentage of time spent on the booking system in the dual-track treatments

Notes: Error bars represent one standard error of means clustered at the matching group level.

Next, we examine the number of participants who chose each track over round. Figure D9 shows that,

on average, participants are marginally significantly more likely to choose the lottery track than the queue
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track (Dual-Queue: 58.9% vs. 41.1%, p = 0.066; Dual-Lottery: 53.6% vs. 46.4%, p = 0.068, Wilcoxon

signed-rank test).

Figure D9: Track choices in the dual-track treatments

Finally, we conduct random-effects probit regression analysis of participants’ likelihood of choosing the

queue track on their time valuations. The results in columns (1) and (3) of Table D6 show that those with

higher time valuations are more likely to choose the queue track, though the effect is statistically significant

only in the Dual-Lottery treatment. We conjecture that participants may be less sensitive to their productivity

than their monetary valuation. Thus, we also investigate the separate effects of monetary valuation and

productivity on a participant’s choice of track. The results in columns (2) and (4) show that monetary

valuation has a significantly positive influence on the likelihood of choosing the queue track: for example,

in the Dual-Lottery treatment, a 100-ECUs increase in the monetary valuation increases the probability of

choosing the queue track by 13.2%. On the contrary, productivity does not have a significant impact in either

dual-track treatment.

Recall that, in the solo-track treatments, the allocative efficiency loss tends to be larger under the queue rule

than the lottery rule, as over 50% of participants spend all their time on the booking task regardless of their

time valuation. The fact that the queue track in the dual- track treatments does attract some participants with
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Table D6: Random-effects Probit Regressions on the Likelihood of Choosing the Queue Track

Average marginal effects
Dual-Queue Dual-Lottery

(1) (2) (3) (4)
Time valuation 0.037 0.027∗∗

(0.023) (0.012)
Monetary valuation 0.147∗∗∗ 0.132∗∗∗

(0.055) (0.028)
Productivity 0.067 0.071

(0.059) (0.074)

Clusters 4 4 4 4
N 448 448 448 448

Notes: Standard errors clustered at the matching group level are in parentheses. We rescale the time valuation by dividing it by 100.
∗∗∗ p < 0.01.

higher time valuations implies that the overall allocative efficiency might be improved compared to the solo-

track treatments: on the one hand, more than half of participants chose the lottery track, which should lead to

a similar level of allocative efficiency as in the solo-track lottery treatments; on the other hand, participants

with higher time valuations should have a higher likelihood of obtaining slots in the queue track.

This conjecture is partially supported. Table D7 reports the breakdown of efficiency loss in the dual-track

treatments. We observe a very similar level of allocative efficiency loss in the Dual-Lottery treatment and

Solo-Lottery7 treatment (p = 0.703, Wilcoxon ranksum test). Thus, the presence of the queue track does not

increase the allocative efficiency loss in this treatment. However, in the Dual-Queue treatment, we observe a

level of allocative efficiency loss comparable to that in the Solo-Queue7 treatment (p = 0.768). Overall, we

conclude that the dual-track system may reduce the allocative efficiency loss seen in the solo-track queue

system.

Examining productive efficiency loss in the dual-track treatments, we see that the strategic efficiency loss

remains substantial although fewer participants choosing the queue track leads to a lower total amount of

efficiency loss compared to the solo-track queue treatment. Similar to the solo-track treatments, we find

no evidence for behavioral efficiency loss, and again find that behavioral efficiency loss is significantly

lower than zero (p = 0.027 and p = 0.033 for Dual-Queue and Dual-Lottery). Nevertheless, the behavioral

efficiency gain is one order of magnitude lower than the strategic efficiency loss.

Overall, our results show that the dual-track system can substantially reduce the total amount of productive
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Table D7: The Breakdown of Efficiency Loss in Each Dual-track Treatment

Dual-Queue Dual-Lottery
Allocative efficiency loss 164.750 143.703

(14.509) (10.066)
Productive efficiency loss
Strategic 814.570 657.927

(48.037) (40.011)
(a) Stage 1 521.376 564.597

(38.569) (38.011)
(b) Stage 2 293.194 93.330

(22.560) (8.168)
Behavioral -58.612 -68.880

(25.787) (31.606)
(a) Slot -13.789 -12.285

(10.694) (13.694)
(b) No slot -44.823 -56.595

(20.429) (23.509)

Total efficiency loss 920.709 732.750
(53.893) (52.022)

Obs. (group × round) 64 64
Notes: Standard errors are in parentheses.

efficiency loss compared to the solo-track queue system. Moreover, the dual-track system can also reduce

potential allocative efficiency loss by channeling some participants with higher time valuations to compete

for slots in the queue track.

D.4 Instructions of Experiment 2

In the following, we translate the original instructions in Chinese into English for the Solo-Queue7, Solo-

Lottery7, Dual-Queue and Dual-Lottery treatments. The instructions for Solo-Queue5 and Solo-Lottery5

are omitted because they are exactly the same as Solo-Queue7 and Solo-Lottery7 except for the different

number of group members and appointment slots.

D.4.1 Instructions for Solo-Queue7

General Information

You are taking part in a decision-making experiment. Please read the instructions carefully. The instructions

are the same for every participant. Please do not communicate with each other during the experiment. Turn
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off your mobile phone and put it into the envelop on your desk. If you have a question, feel free to raise

your hand, and an experimenter will come to help you.

You have earned 15 RMB for showing up on time. In addition, you can earn more money in this experiment.

The amount of money you earn will depend upon the decisions you and other participants make. Your

earnings in this experiment are expressed in EXPERIMENTAL CURRENCY UNITS, which we will refer

to as ECUs. At the end of the experiment you will be paid using a conversion rate of 1 RMB for every 10

ECUs of earnings from the experiment.

Your final payment will be paid to you via bank transfer within 2-3 days on completion of today’s experi-

ment. All decisions are anonymous. That is, other participants will not know about your identity or your

final payment.

Overview of the experiment

The experiment consists of 8 rounds. Each round lasts 8 minutes. A clock on the upper-right corner of the

screen shows the time already past in each round. Each round has two tasks and each participant’s earnings

are sum of the earnings from the two tasks. At the beginning of each round, you can choose which task

to start with: Task 1 or Task 2. The two tasks are displayed on different screens. You may freely switch

between the two task screens at any time you want. But you cannot see both task screens at the same time.

Task 1 is about booking an appointment slot at a public office such as hospital. In each round, you will

be randomly matched into groups of seven participants each. This means that your group members will

most likely be different in each round. Each group has two appointment slots available and each participant

can only book up to one slot. In each round, the private valuation for a slot is determined randomly and

independently for each participant, and will be a natural number between (and including) 400 to 600 ECUs.

Each participant is only informed about her own valuation, but not about other group members’ valuations.

A participant who books a slot will receive ECUs equivalent to her valuation and the one who does not will

receive 0. We will discuss the booking procedure in Task 1 in more detail.

Task 2: In addition to the appointment booking task, in each round you can also work independently on a

counting-dots task: counting the number of white dots in a series of dark-shaded squares. The figure below

shows the task screen. You will enter the number of dots into the box next to the table. After you have
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entered the number, you can click the NEXT button. No matter whether the answer is correct or not, a

new square will be generated. You will earn 35 ECUs for each square you solved correctly. If you enter

a wrong number for a square, you will earn 0 for that square. Thus, in each round your earnings from the

counting-dots task = the number of correct answers × 35 ECUs.

We will now describe in more detail the appointment booking system in Task 1, which consists of two steps.

Step 1: Start from 00:00 (minutes: seconds), end at 04:00. The 2 slots will become immediately available

at 04:00 and will be assigned on a first-come-first-served basis in the following way: Each participant can

choose to switch to and stay on the booking screen to reserve a position in a queue. Those who switch to

the booking screen earlier reserve a front position. However, if a participant switches to the counting-dots

task screen and then back to the booking screen, he will have to go to the back of the queue. When 4:00 is

reached, the slots will be assigned as follows:

1. If the number of participants staying in the queue > 2, each of the first two in the queue will obtain a

slot.

2. If the number of participants staying in the queue ≤ 2, each of them obtains a slot. Any remaining

slot(s) will become available in Step 2.

Step 2: Start from 04:00, end at 08:00. Every participant who has not obtained a slot in Step 1 can switch

to the booking screen at any time and apply for one slot by pressing the BOOKING button. The number of

available slots will be shown on the screen and updated in real time. (Note that you will need to wait for a

slot to become available to book.) Those who have obtained a slot in Step 1 can still switch to the booking

screen. But they will not see the BOOKING button as they do not need to book again.

The available slot(s) in Step 2 can be any number from 1 to 2 and have two sources:

1. Cancelled slot: To mimic the real-world situation in which people may choose to cancel their appoint-

ments, one participant who has obtained a slot in Step 1 will be randomly chosen by the computer to

cancel her slot at some point in Step 2 (the timing is again randomly chosen by the computer). The

cancelled slot will be released and become available in the booking system. The participant whose

slot is cancelled will still receive ECUs equal to her valuation of the slot. But he will not be allowed to
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book another slot in Step 2. Furthermore, he will be notified of the cancellation whenever he switches

to the booking screen.

2. Unassigned slot(s): The unassigned slot(s) may come from Step 1 if there are fewer than 2 participants

staying in the queue in Step 1 before the end of 04:00. There will be no unassigned slot if the two

slots have been assigned in Step 1.

Until 08:00 is reached, the available slots will be assigned on a first-come-first-served basis by pressing the

BOOKING button. In particular, the cancelled slot will become available on the book screen at the moment

when the cancellation happens. The unassigned slot(s) will become immediately available at 04:00.

Payoff

At the end of each round, your round payoff is the sum of the payoffs from the two tasks. At the end of the

experiment, one randomly chosen round will be paid out, in addition to the show-up fee.

This completes the instructions. To ensure every participant understand the instructions, please answer the

quiz on your screen. If there is any question, please raise your hand. Once everyone correctly answers

the quiz, we will start the experiment. Also, in order to help participants familiarize themselves with the

counting-dots task, there will be one practice (non-paying) round consisting of a 5-minute counting-dots

task only.

D.4.2 Instructions for Solo-Lottery7

General Information

You are taking part in a decision-making experiment. Please read the instructions carefully. The instructions

are the same for every participant. Please do not communicate with each other during the experiment. Turn

off your mobile phone and put it into the envelop on your desk. If you have a question, feel free to raise

your hand, and an experimenter will come to help you.

You have earned 15 RMB for showing up on time. In addition, you can earn more money in this experiment.

The amount of money you earn will depend upon the decisions you and other participants make. Your

earnings in this experiment are expressed in EXPERIMENTAL CURRENCY UNITS, which we will refer
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to as ECUs. At the end of the experiment you will be paid using a conversion rate of 1 RMB for every 10

ECUs of earnings from the experiment.

Your final payment will be paid to you via bank transfer within 2-3 days on completion of today’s experi-

ment. All decisions are anonymous. That is, other participants will not know about your identity or your

final payment.

Overview of the experiment

The experiment consists of 8 rounds. Each round lasts 8 minutes. A clock on the upper-right corner of the

screen shows the time already past in each round. Each round has two tasks and each participant’s earnings

are sum of the earnings from the two tasks. At the beginning of each round, you can choose which task

to start with: Task 1 or Task 2. The two tasks are displayed on different screens. You may freely switch

between the two task screens at any time you want. But you cannot see both task screens at the same time.

Task 1 is about booking an appointment slot at a public office such as hospital. In each round, you will

be randomly matched into groups of seven participants each. This means that your group members will

most likely be different in each round. Each group has two appointment slots available and each participant

can only book up to one slot. In each round, the private valuation for a slot is determined randomly and

independently for each participant, and will be a natural number between (and including) 400 to 600 ECUs.

Each participant is only informed about her own valuation, but not about other group members’ valuations.

A participant who books a slot will receive ECUs equivalent to her valuation and the one who does not will

receive 0. We will discuss the booking procedure in Task 1 in more detail.

Task 2: In addition to the appointment booking task, in each round you can also work independently on a

counting-dots task: counting the number of white dots in a series of dark-shaded squares. The figure below

shows the task screen. You will enter the number of dots into the box next to the table. After you have

entered the number, you can click the NEXT button. No matter whether the answer is correct or not, a

new square will be generated. You will earn 35 ECUs for each square you solved correctly. If you enter

a wrong number for a square, you will earn 0 for that square. Thus, in each round your earnings from the

counting-dots task = the number of correct answers × 35 ECUs.

We will now describe in more detail the appointment booking system in Task 1, which consists of two steps.
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Step 1: Start from 00:00 (minutes: seconds), end at 04:00. Every participant can switch to the booking

screen at any time and apply for one slot by pressing the BOOKING button. When 4:00 is reached, the slots

will be assigned as follows:

1. If the number of applicants > 2, all applications will be put into a virtual urn. Then, one by one,

applications are randomly drawn from the urn to fill the two slots.

2. If the number of applicants ≤ 2, each applicant obtains a slot. Any remaining slot(s) will become

available in Step 2.

Step 2: Start from 04:00, end at 08:00. Every participant who has not obtained a slot in Step 1 can switch

to the booking screen at any time and apply for one slot by pressing the BOOKING button. The number of

available slots will be shown on the screen and updated in real time. (Note that you do not need to wait for a

slot to become available to apply.) Those who have obtained a slot in Step 1 can still switch to the booking

screen. But they will not see the BOOKING button as they do not need to apply again.

The available slot(s) in Step 2 can be any number from 1 to 2 and have two sources:

1. Cancelled slot: To mimic the real-world situation in which people may choose to cancel their appoint-

ments, one participant who has obtained a slot in Step 1 will be randomly chosen by the computer to

cancel her slot at some point in Step 2 (the timing is again randomly chosen by the computer). The

cancelled slot will be released and become available in the booking system. The participant whose

slot is cancelled will still receive ECUs equal to her valuation of the slot. But he will not be allowed to

book another slot in Step 2. Furthermore, he will be notified of the cancellation whenever he switches

to the booking screen.

2. Unassigned slot(s): The unassigned slot(s) may come from Step 1 if there are fewer than 2 applicants

in Step 1 before the end of 04:00. There will be no unassigned slot if the two slots have been assigned

in Step 1.

When 08:00 is reached, the slots will be assigned as follows:

1. If in Step 2 the number of applicants > the number of available slots, all applications will be put into

a virtual urn. Then, one by one, applications are randomly drawn from the urn to fill the available

32



slots.

2. If in Step 2 the number of applicants ≤ the number of available slots, each applicant obtains a slot.

Payoff

At the end of each round, your round payoff is the sum of the payoffs from the two tasks. At the end of the

experiment, one randomly chosen round will be paid out, in addition to the show-up fee.

This completes the instructions. To ensure every participant understand the instructions, please answer the

quiz on your screen. If there is any question, please raise your hand. Once everyone correctly answers

the quiz, we will start the experiment. Also, in order to help participants familiarize themselves with the

counting-dots task, there will be one practice (non-paying) round consisting of a 5-minute counting-dots

task only.

D.4.3 Instructions for Dual-Queue

General Information

You are taking part in a decision-making experiment. Please read the instructions carefully. The instructions

are the same for every participant. Please do not communicate with each other during the experiment. Turn

off your mobile phone and put it into the envelop on your desk. If you have a question, feel free to raise

your hand, and an experimenter will come to help you.

You have earned 15 RMB for showing up on time. In addition, you can earn more money in this experiment.

The amount of money you earn will depend upon the decisions you and other participants make. Your

earnings in this experiment are expressed in EXPERIMENTAL CURRENCY UNITS, which we will refer

to as ECUs. At the end of the experiment you will be paid using a conversion rate of 1 RMB for every 10

ECUs of earnings from the experiment.

Your final payment will be paid to you via bank transfer within 2-3 days on completion of today’s experi-

ment. All decisions are anonymous. That is, other participants will not know about your identity or your

final payment.

Overview of the experiment
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The experiment consists of 8 rounds. Each round lasts 8 minutes. A clock on the upper-right corner of the

screen shows the time already past in each round. Each round has two tasks and each participant’s earnings

are sum of the earnings from the two tasks. At the beginning of each round, you can choose which task

to start with: Task 1 or Task 2. The two tasks are displayed on different screens. You may freely switch

between the two task screens at any time you want. But you cannot see both task screens at the same time.

Task 1 is about booking an appointment slot at a public office such as hospital. In each round, you will

be randomly matched into groups of seven participants each. This means that your group members will

most likely be different in each round. Each group has two appointment slots available and each participant

can only book up to one slot. In each round, the private valuation for a slot is determined randomly and

independently for each participant, and will be a natural number between (and including) 400 to 600 ECUs.

Each participant is only informed about her own valuation, but not about other group members’ valuations.

A participant who books a slot will receive ECUs equivalent to her valuation and the one who does not will

receive 0. We will discuss the booking procedure in Task 1 in more detail.

Task 2: In addition to the appointment booking task, in each round you can also work independently on a

counting-dots task: counting the number of white dots in a series of dark-shaded squares. The figure below

shows the task screen. You will enter the number of dots into the box next to the table. After you have

entered the number, you can click the NEXT button. No matter whether the answer is correct or not, a

new square will be generated. You will earn 35 ECUs for each square you solved correctly. If you enter

a wrong number for a square, you will earn 0 for that square. Thus, in each round your earnings from the

counting-dots task = the number of correct answers × 35 ECUs.

We will now describe in more detail the appointment booking system in Task 1, which consists of two steps.

Step 1: At the beginning of each round, each participant must choose one of the following two tracks for

booking slots.

• Track 1: This track has one slot which will be assigned on a first-come-first-served basis.

• Track 2: This track has one slot which will be assigned based on applications.

Note: You can only choose one of the tracks. Your choice cannot be changed during a round. You will
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be informed about how many group members choose Track 1 and how many choose Track 2.

Rules in Track 1: Start from 00:00 (minutes: seconds), end at 04:00. One slot will become immediately

available at 04:00 and will be assigned on a first-come-first-served basis in the following way: Each partic-

ipant who chooses Track 1 can choose to switch to and stay on the booking screen to reserve a position in

a queue. Those who switch to the booking screen earlier reserve a front position. However, if a participant

switches to the counting-dots task screen and then back to the booking screen, he will have to go to the back

of the queue. When 4:00 is reached, the slot will be assigned as follows:

1. If the number of participants staying in the queue > 1, the first one in the queue will obtain the slot.

2. If the number of participants staying in the queue ≤ 1, the one in the queue obtains the slot. If no one

waited in the queue, the slot will become available in Step 2.

Rules in Track 2: Start from 00:00 (minutes: seconds), end at 04:00. Every participant who chooses Track

2 can switch to the booking screen at any time and apply for one slot by pressing the BOOKING button.

When 4:00 is reached, the slot will be assigned as follows:

1. If the number of applicants > 1, all applications will be put into a virtual urn. Then, one application

is randomly drawn from the urn to fill the slot.

2. If the number of applicants ≤ 1, this applicant obtains the slot. If no one applied for the slot, the slot

will become available in Step 2.

Step 2: Start from 04:00, end at 08:00. Every participant who has not obtained a slot in Step 1 can switch

to the booking screen at any time and apply for one slot by pressing the BOOKING button. The number of

available slots will be shown on the screen and updated in real time. (Note that you will need to wait for a

slot to become available to book.) Those who have obtained a slot in Step 1 can still switch to the booking

screen. But they will not see the BOOKING button as they do not need to book again.

The available slot(s) in Step 2 can be any number from 1 to 2 and have two sources:

1. Cancelled slot: To mimic the real-world situation in which people may choose to cancel their appoint-

ments, one participant who has obtained a slot in Step 1 will be randomly chosen by the computer to
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cancel her slot at some point in Step 2 (the timing is again randomly chosen by the computer). The

cancelled slot will be released and become available in the booking system. The participant whose

slot is cancelled will still receive ECUs equal to her valuation of the slot. But he will not be allowed to

book another slot in Step 2. Furthermore, he will be notified of the cancellation whenever he switches

to the booking screen.

2. Unassigned slot(s): The unassigned slot(s) may come from Step 1. There will be no unassigned slot

if the two slots have been assigned in Step 1.

Until 08:00 is reached, the available slots will be assigned on a first-come-first-served basis by pressing the

BOOKING button. In particular, the cancelled slot will become available on the book screen at the moment

when the cancellation happens. The unassigned slot(s) will become immediately available at 04:00.

Payoff

At the end of each round, your round payoff is the sum of the payoffs from the two tasks. At the end of the

experiment, one randomly chosen round will be paid out, in addition to the show-up fee.

This completes the instructions. To ensure every participant understand the instructions, please answer the

quiz on your screen. If there is any question, please raise your hand. Once everyone correctly answers

the quiz, we will start the experiment. Also, in order to help participants familiarize themselves with the

counting-dots task, there will be one practice (non-paying) round consisting of a 5-minute counting-dots

task only.

D.4.4 Instructions for Dual-Lottery

General Information

You are taking part in a decision-making experiment. Please read the instructions carefully. The instructions

are the same for every participant. Please do not communicate with each other during the experiment. Turn

off your mobile phone and put it into the envelop on your desk. If you have a question, feel free to raise

your hand, and an experimenter will come to help you.

You have earned 15 RMB for showing up on time. In addition, you can earn more money in this experiment.
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The amount of money you earn will depend upon the decisions you and other participants make. Your

earnings in this experiment are expressed in EXPERIMENTAL CURRENCY UNITS, which we will refer

to as ECUs. At the end of the experiment you will be paid using a conversion rate of 1 RMB for every 10

ECUs of earnings from the experiment.

Your final payment will be paid to you via bank transfer within 2-3 days on completion of today’s experi-

ment. All decisions are anonymous. That is, other participants will not know about your identity or your

final payment.

Overview of the experiment

The experiment consists of 8 rounds. Each round lasts 8 minutes. A clock on the upper-right corner of the

screen shows the time already past in each round. Each round has two tasks and each participant’s earnings

are sum of the earnings from the two tasks. At the beginning of each round, you can choose which task

to start with: Task 1 or Task 2. The two tasks are displayed on different screens. You may freely switch

between the two task screens at any time you want. But you cannot see both task screens at the same time.

Task 1 is about booking an appointment slot at a public office such as hospital. In each round, you will

be randomly matched into groups of seven participants each. This means that your group members will

most likely be different in each round. Each group has two appointment slots available and each participant

can only book up to one slot. In each round, the private valuation for a slot is determined randomly and

independently for each participant, and will be a natural number between (and including) 400 to 600 ECUs.

Each participant is only informed about her own valuation, but not about other group members’ valuations.

A participant who books a slot will receive ECUs equivalent to her valuation and the one who does not will

receive 0. We will discuss the booking procedure in Task 1 in more detail.

Task 2: In addition to the appointment booking task, in each round you can also work independently on a

counting-dots task: counting the number of white dots in a series of dark-shaded squares. The figure below

shows the task screen. You will enter the number of dots into the box next to the table. After you have

entered the number, you can click the NEXT button. No matter whether the answer is correct or not, a

new square will be generated. You will earn 35 ECUs for each square you solved correctly. If you enter

a wrong number for a square, you will earn 0 for that square. Thus, in each round your earnings from the
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counting-dots task = the number of correct answers × 35 ECUs.

We will now describe in more detail the appointment booking system in Task 1, which consists of two steps.

Step 1: At the beginning of each round, each participant must choose one of the following two tracks for

booking slots.

• Track 1: This track has one slot which will be assigned on a first-come-first-served basis.

• Track 2: This track has one slot which will be assigned based on applications.

Note: You can only choose one of the tracks. Your choice cannot be changed during a round. You will

be informed about how many group members choose Track 1 and how many choose Track 2.

Rules in Track 1: Start from 00:00 (minutes: seconds), end at 04:00. One slot will become immediately

available at 04:00 and will be assigned on a first-come-first-served basis in the following way: Each partic-

ipant who chooses Track 1 can choose to switch to and stay on the booking screen to reserve a position in

a queue. Those who switch to the booking screen earlier reserve a front position. However, if a participant

switches to the counting-dots task screen and then back to the booking screen, he will have to go to the back

of the queue. When 4:00 is reached, the slot will be assigned as follows:

1. If the number of participants staying in the queue > 1, the first one in the queue will obtain the slot.

2. If the number of participants staying in the queue ≤ 1, the one in the queue obtains the slot. If no one

waited in the queue, the slot will become available in Step 2.

Rules in Track 2: Start from 00:00 (minutes: seconds), end at 04:00. Every participant who chooses Track

2 can switch to the booking screen at any time and apply for one slot by pressing the BOOKING button.

When 4:00 is reached, the slot will be assigned as follows:

1. If the number of applicants > 1, all applications will be put into a virtual urn. Then, one application is

randomly drawn from the urn to fill the slot.

2. If the number of applicants ≤ 1, this applicant obtains the slot. If no one applied for the slot, the slot

will become available in Step 2.
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Step 2: Start from 04:00, end at 08:00. Every participant who has not obtained a slot in Step 1 can switch

to the booking screen at any time and apply for one slot by pressing the BOOKING button. The number of

available slots will be shown on the screen and updated in real time. (Note that you do not need to wait for a

slot to become available to apply.) Those who have obtained a slot in Step 1 can still switch to the booking

screen. But they will not see the BOOKING button as they do not need to apply again.

The available slot(s) in Step 2 can be any number from 1 to 2 and have two sources:

1. Cancelled slot: To mimic the real-world situation in which people may choose to cancel their appoint-

ments, one participant who has obtained a slot in Step 1 will be randomly chosen by the computer to

cancel her slot at some point in Step 2 (the timing is again randomly chosen by the computer). The

cancelled slot will be released and become available in the booking system. The participant whose

slot is cancelled will still receive ECUs equal to her valuation of the slot. But he will not be allowed to

book another slot in Step 2. Furthermore, he will be notified of the cancellation whenever he switches

to the booking screen.

2. Unassigned slot(s): The unassigned slot(s) may come from Step 1. There will be no unassigned slot

if the two slots have been assigned in Step 1.

When 08:00 is reached, the slots will be assigned as follows:

1. If in Step 2 the number of applicants > the number of available slots, all applications will be put into

a virtual urn. Then, one by one, applications are randomly drawn from the urn to fill the available

slots.

2. If in Step 2 the number of applicants ≤ the number of available slots, each applicant obtains a slot.

Payoff

At the end of each round, your round payoff is the sum of the payoffs from the two tasks. At the end of the

experiment, one randomly chosen round will be paid out, in addition to the show-up fee.

This completes the instructions. To ensure every participant understand the instructions, please answer the

quiz on your screen. If there is any question, please raise your hand. Once everyone correctly answers
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the quiz, we will start the experiment. Also, in order to help participants familiarize themselves with the

counting-dots task, there will be one practice (non-paying) round consisting of a 5-minute counting-dots

task only.
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